Extensions 1→N→G→Q→1 with N=C2 and Q=C2×Dic18

Direct product G=N×Q with N=C2 and Q=C2×Dic18
dρLabelID
C22×Dic18288C2^2xDic18288,352


Non-split extensions G=N.Q with N=C2 and Q=C2×Dic18
extensionφ:Q→Aut NdρLabelID
C2.1(C2×Dic18) = C4×Dic18central extension (φ=1)288C2.1(C2xDic18)288,78
C2.2(C2×Dic18) = C2×Dic9⋊C4central extension (φ=1)288C2.2(C2xDic18)288,133
C2.3(C2×Dic18) = C2×C4⋊Dic9central extension (φ=1)288C2.3(C2xDic18)288,135
C2.4(C2×Dic18) = C362Q8central stem extension (φ=1)288C2.4(C2xDic18)288,79
C2.5(C2×Dic18) = C36.6Q8central stem extension (φ=1)288C2.5(C2xDic18)288,80
C2.6(C2×Dic18) = C222Dic18central stem extension (φ=1)144C2.6(C2xDic18)288,88
C2.7(C2×Dic18) = C36⋊Q8central stem extension (φ=1)288C2.7(C2xDic18)288,98
C2.8(C2×Dic18) = C36.3Q8central stem extension (φ=1)288C2.8(C2xDic18)288,100
C2.9(C2×Dic18) = C36.49D4central stem extension (φ=1)144C2.9(C2xDic18)288,134

׿
×
𝔽