Copied to
clipboard

G = C36.49D4order 288 = 25·32

5th non-split extension by C36 of D4 acting via D4/C22=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C36.49D4, C223Dic18, C23.25D18, (C2×C18)⋊3Q8, C4⋊Dic98C2, C94(C22⋊Q8), C18.8(C2×Q8), Dic9⋊C42C2, (C2×C4).68D18, C18.40(C2×D4), (C22×C4).7D9, (C2×Dic18)⋊6C2, (C2×C12).342D6, C4.23(C9⋊D4), (C22×C36).6C2, (C2×C6).15Dic6, C2.9(C2×Dic18), C6.35(C2×Dic6), C6.85(C4○D12), C18.15(C4○D4), (C2×C36).75C22, (C2×C18).42C23, (C22×C12).18S3, C3.(C12.48D4), (C22×C6).136D6, C12.110(C3⋊D4), C18.D4.4C2, C2.17(D365C2), C22.54(C22×D9), (C22×C18).34C22, (C2×Dic9).12C22, C2.5(C2×C9⋊D4), C6.87(C2×C3⋊D4), (C2×C6).199(C22×S3), SmallGroup(288,134)

Series: Derived Chief Lower central Upper central

C1C2×C18 — C36.49D4
C1C3C9C18C2×C18C2×Dic9C2×Dic18 — C36.49D4
C9C2×C18 — C36.49D4
C1C22C22×C4

Generators and relations for C36.49D4
 G = < a,b,c | a36=b4=1, c2=a18, bab-1=cac-1=a-1, cbc-1=a18b-1 >

Subgroups: 380 in 111 conjugacy classes, 50 normal (30 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C22, C6, C6, C2×C4, C2×C4, Q8, C23, C9, Dic3, C12, C12, C2×C6, C2×C6, C2×C6, C22⋊C4, C4⋊C4, C22×C4, C2×Q8, C18, C18, Dic6, C2×Dic3, C2×C12, C2×C12, C22×C6, C22⋊Q8, Dic9, C36, C36, C2×C18, C2×C18, C2×C18, Dic3⋊C4, C4⋊Dic3, C6.D4, C2×Dic6, C22×C12, Dic18, C2×Dic9, C2×C36, C2×C36, C22×C18, C12.48D4, Dic9⋊C4, C4⋊Dic9, C18.D4, C2×Dic18, C22×C36, C36.49D4
Quotients: C1, C2, C22, S3, D4, Q8, C23, D6, C2×D4, C2×Q8, C4○D4, D9, Dic6, C3⋊D4, C22×S3, C22⋊Q8, D18, C2×Dic6, C4○D12, C2×C3⋊D4, Dic18, C9⋊D4, C22×D9, C12.48D4, C2×Dic18, D365C2, C2×C9⋊D4, C36.49D4

Smallest permutation representation of C36.49D4
On 144 points
Generators in S144
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)
(1 50 86 144)(2 49 87 143)(3 48 88 142)(4 47 89 141)(5 46 90 140)(6 45 91 139)(7 44 92 138)(8 43 93 137)(9 42 94 136)(10 41 95 135)(11 40 96 134)(12 39 97 133)(13 38 98 132)(14 37 99 131)(15 72 100 130)(16 71 101 129)(17 70 102 128)(18 69 103 127)(19 68 104 126)(20 67 105 125)(21 66 106 124)(22 65 107 123)(23 64 108 122)(24 63 73 121)(25 62 74 120)(26 61 75 119)(27 60 76 118)(28 59 77 117)(29 58 78 116)(30 57 79 115)(31 56 80 114)(32 55 81 113)(33 54 82 112)(34 53 83 111)(35 52 84 110)(36 51 85 109)
(1 126 19 144)(2 125 20 143)(3 124 21 142)(4 123 22 141)(5 122 23 140)(6 121 24 139)(7 120 25 138)(8 119 26 137)(9 118 27 136)(10 117 28 135)(11 116 29 134)(12 115 30 133)(13 114 31 132)(14 113 32 131)(15 112 33 130)(16 111 34 129)(17 110 35 128)(18 109 36 127)(37 99 55 81)(38 98 56 80)(39 97 57 79)(40 96 58 78)(41 95 59 77)(42 94 60 76)(43 93 61 75)(44 92 62 74)(45 91 63 73)(46 90 64 108)(47 89 65 107)(48 88 66 106)(49 87 67 105)(50 86 68 104)(51 85 69 103)(52 84 70 102)(53 83 71 101)(54 82 72 100)

G:=sub<Sym(144)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,50,86,144)(2,49,87,143)(3,48,88,142)(4,47,89,141)(5,46,90,140)(6,45,91,139)(7,44,92,138)(8,43,93,137)(9,42,94,136)(10,41,95,135)(11,40,96,134)(12,39,97,133)(13,38,98,132)(14,37,99,131)(15,72,100,130)(16,71,101,129)(17,70,102,128)(18,69,103,127)(19,68,104,126)(20,67,105,125)(21,66,106,124)(22,65,107,123)(23,64,108,122)(24,63,73,121)(25,62,74,120)(26,61,75,119)(27,60,76,118)(28,59,77,117)(29,58,78,116)(30,57,79,115)(31,56,80,114)(32,55,81,113)(33,54,82,112)(34,53,83,111)(35,52,84,110)(36,51,85,109), (1,126,19,144)(2,125,20,143)(3,124,21,142)(4,123,22,141)(5,122,23,140)(6,121,24,139)(7,120,25,138)(8,119,26,137)(9,118,27,136)(10,117,28,135)(11,116,29,134)(12,115,30,133)(13,114,31,132)(14,113,32,131)(15,112,33,130)(16,111,34,129)(17,110,35,128)(18,109,36,127)(37,99,55,81)(38,98,56,80)(39,97,57,79)(40,96,58,78)(41,95,59,77)(42,94,60,76)(43,93,61,75)(44,92,62,74)(45,91,63,73)(46,90,64,108)(47,89,65,107)(48,88,66,106)(49,87,67,105)(50,86,68,104)(51,85,69,103)(52,84,70,102)(53,83,71,101)(54,82,72,100)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,50,86,144)(2,49,87,143)(3,48,88,142)(4,47,89,141)(5,46,90,140)(6,45,91,139)(7,44,92,138)(8,43,93,137)(9,42,94,136)(10,41,95,135)(11,40,96,134)(12,39,97,133)(13,38,98,132)(14,37,99,131)(15,72,100,130)(16,71,101,129)(17,70,102,128)(18,69,103,127)(19,68,104,126)(20,67,105,125)(21,66,106,124)(22,65,107,123)(23,64,108,122)(24,63,73,121)(25,62,74,120)(26,61,75,119)(27,60,76,118)(28,59,77,117)(29,58,78,116)(30,57,79,115)(31,56,80,114)(32,55,81,113)(33,54,82,112)(34,53,83,111)(35,52,84,110)(36,51,85,109), (1,126,19,144)(2,125,20,143)(3,124,21,142)(4,123,22,141)(5,122,23,140)(6,121,24,139)(7,120,25,138)(8,119,26,137)(9,118,27,136)(10,117,28,135)(11,116,29,134)(12,115,30,133)(13,114,31,132)(14,113,32,131)(15,112,33,130)(16,111,34,129)(17,110,35,128)(18,109,36,127)(37,99,55,81)(38,98,56,80)(39,97,57,79)(40,96,58,78)(41,95,59,77)(42,94,60,76)(43,93,61,75)(44,92,62,74)(45,91,63,73)(46,90,64,108)(47,89,65,107)(48,88,66,106)(49,87,67,105)(50,86,68,104)(51,85,69,103)(52,84,70,102)(53,83,71,101)(54,82,72,100) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)], [(1,50,86,144),(2,49,87,143),(3,48,88,142),(4,47,89,141),(5,46,90,140),(6,45,91,139),(7,44,92,138),(8,43,93,137),(9,42,94,136),(10,41,95,135),(11,40,96,134),(12,39,97,133),(13,38,98,132),(14,37,99,131),(15,72,100,130),(16,71,101,129),(17,70,102,128),(18,69,103,127),(19,68,104,126),(20,67,105,125),(21,66,106,124),(22,65,107,123),(23,64,108,122),(24,63,73,121),(25,62,74,120),(26,61,75,119),(27,60,76,118),(28,59,77,117),(29,58,78,116),(30,57,79,115),(31,56,80,114),(32,55,81,113),(33,54,82,112),(34,53,83,111),(35,52,84,110),(36,51,85,109)], [(1,126,19,144),(2,125,20,143),(3,124,21,142),(4,123,22,141),(5,122,23,140),(6,121,24,139),(7,120,25,138),(8,119,26,137),(9,118,27,136),(10,117,28,135),(11,116,29,134),(12,115,30,133),(13,114,31,132),(14,113,32,131),(15,112,33,130),(16,111,34,129),(17,110,35,128),(18,109,36,127),(37,99,55,81),(38,98,56,80),(39,97,57,79),(40,96,58,78),(41,95,59,77),(42,94,60,76),(43,93,61,75),(44,92,62,74),(45,91,63,73),(46,90,64,108),(47,89,65,107),(48,88,66,106),(49,87,67,105),(50,86,68,104),(51,85,69,103),(52,84,70,102),(53,83,71,101),(54,82,72,100)]])

78 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C4D4E4F4G4H6A···6G9A9B9C12A···12H18A···18U36A···36X
order1222223444444446···699912···1218···1836···36
size11112222222363636362···22222···22···22···2

78 irreducible representations

dim111111222222222222222
type++++++++-+++-++-
imageC1C2C2C2C2C2S3D4Q8D6D6C4○D4D9C3⋊D4Dic6D18D18C4○D12C9⋊D4Dic18D365C2
kernelC36.49D4Dic9⋊C4C4⋊Dic9C18.D4C2×Dic18C22×C36C22×C12C36C2×C18C2×C12C22×C6C18C22×C4C12C2×C6C2×C4C23C6C4C22C2
# reps121211122212344634121212

Matrix representation of C36.49D4 in GL4(𝔽37) generated by

83500
01400
00130
00020
,
36000
3100
0001
00360
,
11300
343600
0001
00360
G:=sub<GL(4,GF(37))| [8,0,0,0,35,14,0,0,0,0,13,0,0,0,0,20],[36,3,0,0,0,1,0,0,0,0,0,36,0,0,1,0],[1,34,0,0,13,36,0,0,0,0,0,36,0,0,1,0] >;

C36.49D4 in GAP, Magma, Sage, TeX

C_{36}._{49}D_4
% in TeX

G:=Group("C36.49D4");
// GroupNames label

G:=SmallGroup(288,134);
// by ID

G=gap.SmallGroup(288,134);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,112,253,120,254,6725,292,9414]);
// Polycyclic

G:=Group<a,b,c|a^36=b^4=1,c^2=a^18,b*a*b^-1=c*a*c^-1=a^-1,c*b*c^-1=a^18*b^-1>;
// generators/relations

׿
×
𝔽