Extensions 1→N→G→Q→1 with N=C4 and Q=Dic18

Direct product G=N×Q with N=C4 and Q=Dic18

Semidirect products G=N:Q with N=C4 and Q=Dic18
extensionφ:Q→Aut NdρLabelID
C41Dic18 = C36⋊Q8φ: Dic18/Dic9C2 ⊆ Aut C4288C4:1Dic18288,98
C42Dic18 = C362Q8φ: Dic18/C36C2 ⊆ Aut C4288C4:2Dic18288,79

Non-split extensions G=N.Q with N=C4 and Q=Dic18
extensionφ:Q→Aut NdρLabelID
C4.1Dic18 = C36.Q8φ: Dic18/Dic9C2 ⊆ Aut C4288C4.1Dic18288,14
C4.2Dic18 = C4.Dic18φ: Dic18/Dic9C2 ⊆ Aut C4288C4.2Dic18288,15
C4.3Dic18 = C36.3Q8φ: Dic18/Dic9C2 ⊆ Aut C4288C4.3Dic18288,100
C4.4Dic18 = C8⋊Dic9φ: Dic18/C36C2 ⊆ Aut C4288C4.4Dic18288,25
C4.5Dic18 = C721C4φ: Dic18/C36C2 ⊆ Aut C4288C4.5Dic18288,26
C4.6Dic18 = C36.6Q8φ: Dic18/C36C2 ⊆ Aut C4288C4.6Dic18288,80
C4.7Dic18 = C36⋊C8central extension (φ=1)288C4.7Dic18288,11
C4.8Dic18 = Dic9⋊C8central extension (φ=1)288C4.8Dic18288,22