Extensions 1→N→G→Q→1 with N=S3×C3⋊C8 and Q=C2

Direct product G=N×Q with N=S3×C3⋊C8 and Q=C2
dρLabelID
C2×S3×C3⋊C896C2xS3xC3:C8288,460

Semidirect products G=N:Q with N=S3×C3⋊C8 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3×C3⋊C8)⋊1C2 = S3×D4⋊S3φ: C2/C1C2 ⊆ Out S3×C3⋊C8488+(S3xC3:C8):1C2288,572
(S3×C3⋊C8)⋊2C2 = D12.22D6φ: C2/C1C2 ⊆ Out S3×C3⋊C8488-(S3xC3:C8):2C2288,581
(S3×C3⋊C8)⋊3C2 = D12.13D6φ: C2/C1C2 ⊆ Out S3×C3⋊C8488+(S3xC3:C8):3C2288,597
(S3×C3⋊C8)⋊4C2 = S3×D4.S3φ: C2/C1C2 ⊆ Out S3×C3⋊C8488-(S3xC3:C8):4C2288,576
(S3×C3⋊C8)⋊5C2 = Dic6.20D6φ: C2/C1C2 ⊆ Out S3×C3⋊C8488+(S3xC3:C8):5C2288,583
(S3×C3⋊C8)⋊6C2 = S3×Q82S3φ: C2/C1C2 ⊆ Out S3×C3⋊C8488+(S3xC3:C8):6C2288,586
(S3×C3⋊C8)⋊7C2 = D12.12D6φ: C2/C1C2 ⊆ Out S3×C3⋊C8968-(S3xC3:C8):7C2288,595
(S3×C3⋊C8)⋊8C2 = C24.64D6φ: C2/C1C2 ⊆ Out S3×C3⋊C8484(S3xC3:C8):8C2288,452
(S3×C3⋊C8)⋊9C2 = D12.2Dic3φ: C2/C1C2 ⊆ Out S3×C3⋊C8484(S3xC3:C8):9C2288,462
(S3×C3⋊C8)⋊10C2 = S3×C8⋊S3φ: C2/C1C2 ⊆ Out S3×C3⋊C8484(S3xC3:C8):10C2288,438
(S3×C3⋊C8)⋊11C2 = C24.D6φ: C2/C1C2 ⊆ Out S3×C3⋊C8484(S3xC3:C8):11C2288,453
(S3×C3⋊C8)⋊12C2 = S3×C4.Dic3φ: C2/C1C2 ⊆ Out S3×C3⋊C8484(S3xC3:C8):12C2288,461
(S3×C3⋊C8)⋊13C2 = D12.Dic3φ: C2/C1C2 ⊆ Out S3×C3⋊C8484(S3xC3:C8):13C2288,463
(S3×C3⋊C8)⋊14C2 = S32×C8φ: trivial image484(S3xC3:C8):14C2288,437

Non-split extensions G=N.Q with N=S3×C3⋊C8 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3×C3⋊C8).C2 = S3×C3⋊Q16φ: C2/C1C2 ⊆ Out S3×C3⋊C8968-(S3xC3:C8).C2288,590

׿
×
𝔽