Copied to
clipboard

G = Dic6.20D6order 288 = 25·32

7th non-split extension by Dic6 of D6 acting via D6/S3=C2

metabelian, supersoluble, monomial

Aliases: Dic6.20D6, D4.6S32, C3⋊C8.13D6, D4.S37S3, D42S33S3, (S3×C6).11D4, (C3×D4).22D6, (C4×S3).21D6, C6.153(S3×D4), C327D84C2, D6.6D65C2, D6.2(C3⋊D4), C3211(C4○D8), C322Q167C2, C33(Q8.13D6), C36(Q8.7D6), C12.12(C22×S3), (C3×C12).12C23, (C3×Dic3).40D4, C325SD1612C2, (S3×C12).17C22, C12⋊S3.8C22, C324C8.8C22, (D4×C32).8C22, Dic3.21(C3⋊D4), (C3×Dic6).13C22, (S3×C3⋊C8)⋊5C2, C4.12(C2×S32), (C3×D4.S3)⋊7C2, C6.49(C2×C3⋊D4), C2.27(S3×C3⋊D4), (C3×D42S3)⋊3C2, (C3×C6).127(C2×D4), (C3×C3⋊C8).17C22, SmallGroup(288,583)

Series: Derived Chief Lower central Upper central

C1C3×C12 — Dic6.20D6
C1C3C32C3×C6C3×C12S3×C12D6.6D6 — Dic6.20D6
C32C3×C6C3×C12 — Dic6.20D6
C1C2C4D4

Generators and relations for Dic6.20D6
 G = < a,b,c,d | a12=c6=1, b2=d2=a6, bab-1=a-1, cac-1=dad-1=a7, cbc-1=a9b, dbd-1=a3b, dcd-1=a6c-1 >

Subgroups: 546 in 135 conjugacy classes, 40 normal (all characteristic)
C1, C2, C2 [×3], C3 [×2], C3, C4, C4 [×3], C22 [×3], S3 [×4], C6 [×2], C6 [×5], C8 [×2], C2×C4 [×3], D4, D4 [×3], Q8 [×2], C32, Dic3, Dic3 [×2], C12 [×2], C12 [×4], D6, D6 [×3], C2×C6 [×4], C2×C8, D8, SD16 [×2], Q16, C4○D4 [×2], C3×S3, C3⋊S3, C3×C6, C3×C6, C3⋊C8, C3⋊C8 [×3], C24, Dic6 [×2], C4×S3, C4×S3 [×2], D12 [×4], C2×Dic3, C3⋊D4 [×2], C2×C12 [×2], C3×D4 [×2], C3×D4 [×2], C3×Q8 [×2], C4○D8, C3×Dic3, C3×Dic3 [×2], C3×C12, S3×C6, C2×C3⋊S3, C62, S3×C8, C24⋊C2, C2×C3⋊C8, D4⋊S3 [×3], D4.S3, Q82S3, C3⋊Q16 [×2], C3×SD16, C4○D12, D42S3, Q83S3, C3×C4○D4, C3×C3⋊C8, C324C8, C6.D6, C3⋊D12, C3×Dic6 [×2], S3×C12, C6×Dic3, C3×C3⋊D4, C12⋊S3, D4×C32, Q8.7D6, Q8.13D6, S3×C3⋊C8, C325SD16, C322Q16, C3×D4.S3, C327D8, D6.6D6, C3×D42S3, Dic6.20D6
Quotients: C1, C2 [×7], C22 [×7], S3 [×2], D4 [×2], C23, D6 [×6], C2×D4, C3⋊D4 [×2], C22×S3 [×2], C4○D8, S32, S3×D4, C2×C3⋊D4, C2×S32, Q8.7D6, Q8.13D6, S3×C3⋊D4, Dic6.20D6

Smallest permutation representation of Dic6.20D6
On 48 points
Generators in S48
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 35 7 29)(2 34 8 28)(3 33 9 27)(4 32 10 26)(5 31 11 25)(6 30 12 36)(13 42 19 48)(14 41 20 47)(15 40 21 46)(16 39 22 45)(17 38 23 44)(18 37 24 43)
(1 23 9 19 5 15)(2 18 10 14 6 22)(3 13 11 21 7 17)(4 20 12 16 8 24)(25 37 29 41 33 45)(26 44 30 48 34 40)(27 39 31 43 35 47)(28 46 32 38 36 42)
(1 37 7 43)(2 44 8 38)(3 39 9 45)(4 46 10 40)(5 41 11 47)(6 48 12 42)(13 33 19 27)(14 28 20 34)(15 35 21 29)(16 30 22 36)(17 25 23 31)(18 32 24 26)

G:=sub<Sym(48)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,35,7,29)(2,34,8,28)(3,33,9,27)(4,32,10,26)(5,31,11,25)(6,30,12,36)(13,42,19,48)(14,41,20,47)(15,40,21,46)(16,39,22,45)(17,38,23,44)(18,37,24,43), (1,23,9,19,5,15)(2,18,10,14,6,22)(3,13,11,21,7,17)(4,20,12,16,8,24)(25,37,29,41,33,45)(26,44,30,48,34,40)(27,39,31,43,35,47)(28,46,32,38,36,42), (1,37,7,43)(2,44,8,38)(3,39,9,45)(4,46,10,40)(5,41,11,47)(6,48,12,42)(13,33,19,27)(14,28,20,34)(15,35,21,29)(16,30,22,36)(17,25,23,31)(18,32,24,26)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,35,7,29)(2,34,8,28)(3,33,9,27)(4,32,10,26)(5,31,11,25)(6,30,12,36)(13,42,19,48)(14,41,20,47)(15,40,21,46)(16,39,22,45)(17,38,23,44)(18,37,24,43), (1,23,9,19,5,15)(2,18,10,14,6,22)(3,13,11,21,7,17)(4,20,12,16,8,24)(25,37,29,41,33,45)(26,44,30,48,34,40)(27,39,31,43,35,47)(28,46,32,38,36,42), (1,37,7,43)(2,44,8,38)(3,39,9,45)(4,46,10,40)(5,41,11,47)(6,48,12,42)(13,33,19,27)(14,28,20,34)(15,35,21,29)(16,30,22,36)(17,25,23,31)(18,32,24,26) );

G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,35,7,29),(2,34,8,28),(3,33,9,27),(4,32,10,26),(5,31,11,25),(6,30,12,36),(13,42,19,48),(14,41,20,47),(15,40,21,46),(16,39,22,45),(17,38,23,44),(18,37,24,43)], [(1,23,9,19,5,15),(2,18,10,14,6,22),(3,13,11,21,7,17),(4,20,12,16,8,24),(25,37,29,41,33,45),(26,44,30,48,34,40),(27,39,31,43,35,47),(28,46,32,38,36,42)], [(1,37,7,43),(2,44,8,38),(3,39,9,45),(4,46,10,40),(5,41,11,47),(6,48,12,42),(13,33,19,27),(14,28,20,34),(15,35,21,29),(16,30,22,36),(17,25,23,31),(18,32,24,26)])

36 conjugacy classes

class 1 2A2B2C2D3A3B3C4A4B4C4D4E6A6B6C6D6E6F6G6H6I8A8B8C8D12A12B12C12D12E12F12G12H24A24B
order1222233344444666666666888812121212121212122424
size11463622423312122244488812661818446681212241212

36 irreducible representations

dim11111111222222222224444448
type++++++++++++++++++++
imageC1C2C2C2C2C2C2C2S3S3D4D4D6D6D6D6C3⋊D4C3⋊D4C4○D8S32S3×D4C2×S32Q8.7D6Q8.13D6S3×C3⋊D4Dic6.20D6
kernelDic6.20D6S3×C3⋊C8C325SD16C322Q16C3×D4.S3C327D8D6.6D6C3×D42S3D4.S3D42S3C3×Dic3S3×C6C3⋊C8Dic6C4×S3C3×D4Dic3D6C32D4C6C4C3C3C2C1
# reps11111111111112122241112221

Matrix representation of Dic6.20D6 in GL6(𝔽73)

1480000
3720000
001000
000100
00007272
000010
,
27550000
0460000
0072000
0007200
0000720
000011
,
0380000
2500000
0072100
0072000
0000720
0000072
,
12690000
18610000
001000
0017200
000010
000001

G:=sub<GL(6,GF(73))| [1,3,0,0,0,0,48,72,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,72,1,0,0,0,0,72,0],[27,0,0,0,0,0,55,46,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,72,1,0,0,0,0,0,1],[0,25,0,0,0,0,38,0,0,0,0,0,0,0,72,72,0,0,0,0,1,0,0,0,0,0,0,0,72,0,0,0,0,0,0,72],[12,18,0,0,0,0,69,61,0,0,0,0,0,0,1,1,0,0,0,0,0,72,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;

Dic6.20D6 in GAP, Magma, Sage, TeX

{\rm Dic}_6._{20}D_6
% in TeX

G:=Group("Dic6.20D6");
// GroupNames label

G:=SmallGroup(288,583);
// by ID

G=gap.SmallGroup(288,583);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,253,120,422,135,346,185,80,1356,9414]);
// Polycyclic

G:=Group<a,b,c,d|a^12=c^6=1,b^2=d^2=a^6,b*a*b^-1=a^-1,c*a*c^-1=d*a*d^-1=a^7,c*b*c^-1=a^9*b,d*b*d^-1=a^3*b,d*c*d^-1=a^6*c^-1>;
// generators/relations

׿
×
𝔽