Extensions 1→N→G→Q→1 with N=D6.Dic3 and Q=C2

Direct product G=N×Q with N=D6.Dic3 and Q=C2
dρLabelID
C2×D6.Dic396C2xD6.Dic3288,467

Semidirect products G=N:Q with N=D6.Dic3 and Q=C2
extensionφ:Q→Out NdρLabelID
D6.Dic31C2 = Dic6.19D6φ: C2/C1C2 ⊆ Out D6.Dic3488-D6.Dic3:1C2288,577
D6.Dic32C2 = D12.7D6φ: C2/C1C2 ⊆ Out D6.Dic3488+D6.Dic3:2C2288,582
D6.Dic33C2 = D126D6φ: C2/C1C2 ⊆ Out D6.Dic3488+D6.Dic3:3C2288,587
D6.Dic34C2 = D12.24D6φ: C2/C1C2 ⊆ Out D6.Dic3968-D6.Dic3:4C2288,594
D6.Dic35C2 = Dic63D6φ: C2/C1C2 ⊆ Out D6.Dic3488+D6.Dic3:5C2288,573
D6.Dic36C2 = D129D6φ: C2/C1C2 ⊆ Out D6.Dic3488-D6.Dic3:6C2288,580
D6.Dic37C2 = D12.11D6φ: C2/C1C2 ⊆ Out D6.Dic3968-D6.Dic3:7C2288,591
D6.Dic38C2 = Dic6.22D6φ: C2/C1C2 ⊆ Out D6.Dic3488+D6.Dic3:8C2288,596
D6.Dic39C2 = S3×C8⋊S3φ: C2/C1C2 ⊆ Out D6.Dic3484D6.Dic3:9C2288,438
D6.Dic310C2 = D12.2Dic3φ: C2/C1C2 ⊆ Out D6.Dic3484D6.Dic3:10C2288,462
D6.Dic311C2 = C24⋊D6φ: C2/C1C2 ⊆ Out D6.Dic3484D6.Dic3:11C2288,439
D6.Dic312C2 = C24.64D6φ: C2/C1C2 ⊆ Out D6.Dic3484D6.Dic3:12C2288,452
D6.Dic313C2 = S3×C4.Dic3φ: C2/C1C2 ⊆ Out D6.Dic3484D6.Dic3:13C2288,461
D6.Dic314C2 = D12.Dic3φ: C2/C1C2 ⊆ Out D6.Dic3484D6.Dic3:14C2288,463
D6.Dic315C2 = C24.63D6φ: trivial image484D6.Dic3:15C2288,451


׿
×
𝔽