metabelian, supersoluble, monomial
Aliases: Dic6⋊3D6, D12.21D6, D4⋊2S32, C3⋊C8⋊5D6, D4⋊S3⋊1S3, (C3×D4)⋊6D6, (S3×D12)⋊5C2, (C4×S3).5D6, (S3×C6).8D4, D4⋊2S3⋊1S3, C3⋊7(D8⋊S3), C6.147(S3×D4), C32⋊7D8⋊2C2, C3⋊2(D4⋊D6), D6.6(C3⋊D4), D6.Dic3⋊5C2, C32⋊9(C8⋊C22), (C3×C12).2C23, C12.2(C22×S3), Dic6⋊S3⋊7C2, C32⋊5SD16⋊7C2, C32⋊4C8⋊4C22, (C3×Dic3).34D4, (C3×Dic6)⋊5C22, (D4×C32)⋊2C22, (S3×C12).11C22, C12⋊S3.6C22, (C3×D12).10C22, Dic3.15(C3⋊D4), C4.2(C2×S32), (C3×D4⋊S3)⋊5C2, (C3×C3⋊C8)⋊10C22, C2.21(S3×C3⋊D4), C6.43(C2×C3⋊D4), (C3×D4⋊2S3)⋊1C2, (C3×C6).117(C2×D4), SmallGroup(288,573)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for Dic6⋊3D6
G = < a,b,c,d | a12=c6=d2=1, b2=a6, bab-1=dad=a-1, cac-1=a5, cbc-1=a6b, dbd=a9b, dcd=c-1 >
Subgroups: 706 in 147 conjugacy classes, 40 normal (all characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, S3, C6, C6, C8, C2×C4, D4, D4, Q8, C23, C32, Dic3, Dic3, C12, C12, D6, D6, C2×C6, M4(2), D8, SD16, C2×D4, C4○D4, C3×S3, C3⋊S3, C3×C6, C3×C6, C3⋊C8, C3⋊C8, C24, Dic6, C4×S3, D12, D12, C2×Dic3, C3⋊D4, C2×C12, C3×D4, C3×D4, C3×Q8, C22×S3, C8⋊C22, C3×Dic3, C3×Dic3, C3×C12, S32, S3×C6, S3×C6, C2×C3⋊S3, C62, C8⋊S3, C24⋊C2, C4.Dic3, D4⋊S3, D4⋊S3, D4.S3, Q8⋊2S3, C3×D8, C2×D12, S3×D4, D4⋊2S3, C3×C4○D4, C3×C3⋊C8, C32⋊4C8, C3⋊D12, C3×Dic6, S3×C12, C3×D12, C6×Dic3, C3×C3⋊D4, C12⋊S3, D4×C32, C2×S32, D8⋊S3, D4⋊D6, D6.Dic3, Dic6⋊S3, C32⋊5SD16, C3×D4⋊S3, C32⋊7D8, S3×D12, C3×D4⋊2S3, Dic6⋊3D6
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C3⋊D4, C22×S3, C8⋊C22, S32, S3×D4, C2×C3⋊D4, C2×S32, D8⋊S3, D4⋊D6, S3×C3⋊D4, Dic6⋊3D6
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 41 7 47)(2 40 8 46)(3 39 9 45)(4 38 10 44)(5 37 11 43)(6 48 12 42)(13 30 19 36)(14 29 20 35)(15 28 21 34)(16 27 22 33)(17 26 23 32)(18 25 24 31)
(1 35 9 27 5 31)(2 28 10 32 6 36)(3 33 11 25 7 29)(4 26 12 30 8 34)(13 46 21 38 17 42)(14 39 22 43 18 47)(15 44 23 48 19 40)(16 37 24 41 20 45)
(1 9)(2 8)(3 7)(4 6)(10 12)(13 18)(14 17)(15 16)(19 24)(20 23)(21 22)(25 33)(26 32)(27 31)(28 30)(34 36)(37 40)(38 39)(41 48)(42 47)(43 46)(44 45)
G:=sub<Sym(48)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,41,7,47)(2,40,8,46)(3,39,9,45)(4,38,10,44)(5,37,11,43)(6,48,12,42)(13,30,19,36)(14,29,20,35)(15,28,21,34)(16,27,22,33)(17,26,23,32)(18,25,24,31), (1,35,9,27,5,31)(2,28,10,32,6,36)(3,33,11,25,7,29)(4,26,12,30,8,34)(13,46,21,38,17,42)(14,39,22,43,18,47)(15,44,23,48,19,40)(16,37,24,41,20,45), (1,9)(2,8)(3,7)(4,6)(10,12)(13,18)(14,17)(15,16)(19,24)(20,23)(21,22)(25,33)(26,32)(27,31)(28,30)(34,36)(37,40)(38,39)(41,48)(42,47)(43,46)(44,45)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,41,7,47)(2,40,8,46)(3,39,9,45)(4,38,10,44)(5,37,11,43)(6,48,12,42)(13,30,19,36)(14,29,20,35)(15,28,21,34)(16,27,22,33)(17,26,23,32)(18,25,24,31), (1,35,9,27,5,31)(2,28,10,32,6,36)(3,33,11,25,7,29)(4,26,12,30,8,34)(13,46,21,38,17,42)(14,39,22,43,18,47)(15,44,23,48,19,40)(16,37,24,41,20,45), (1,9)(2,8)(3,7)(4,6)(10,12)(13,18)(14,17)(15,16)(19,24)(20,23)(21,22)(25,33)(26,32)(27,31)(28,30)(34,36)(37,40)(38,39)(41,48)(42,47)(43,46)(44,45) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,41,7,47),(2,40,8,46),(3,39,9,45),(4,38,10,44),(5,37,11,43),(6,48,12,42),(13,30,19,36),(14,29,20,35),(15,28,21,34),(16,27,22,33),(17,26,23,32),(18,25,24,31)], [(1,35,9,27,5,31),(2,28,10,32,6,36),(3,33,11,25,7,29),(4,26,12,30,8,34),(13,46,21,38,17,42),(14,39,22,43,18,47),(15,44,23,48,19,40),(16,37,24,41,20,45)], [(1,9),(2,8),(3,7),(4,6),(10,12),(13,18),(14,17),(15,16),(19,24),(20,23),(21,22),(25,33),(26,32),(27,31),(28,30),(34,36),(37,40),(38,39),(41,48),(42,47),(43,46),(44,45)]])
33 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 3A | 3B | 3C | 4A | 4B | 4C | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 6H | 6I | 6J | 8A | 8B | 12A | 12B | 12C | 12D | 12E | 12F | 12G | 24A | 24B |
order | 1 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 4 | 4 | 4 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 8 | 8 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 24 | 24 |
size | 1 | 1 | 4 | 6 | 12 | 36 | 2 | 2 | 4 | 2 | 6 | 12 | 2 | 2 | 4 | 4 | 4 | 8 | 8 | 8 | 12 | 24 | 12 | 36 | 4 | 4 | 6 | 6 | 8 | 12 | 12 | 12 | 12 |
33 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 8 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | ||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | S3 | S3 | D4 | D4 | D6 | D6 | D6 | D6 | D6 | C3⋊D4 | C3⋊D4 | C8⋊C22 | S32 | S3×D4 | C2×S32 | D8⋊S3 | D4⋊D6 | S3×C3⋊D4 | Dic6⋊3D6 |
kernel | Dic6⋊3D6 | D6.Dic3 | Dic6⋊S3 | C32⋊5SD16 | C3×D4⋊S3 | C32⋊7D8 | S3×D12 | C3×D4⋊2S3 | D4⋊S3 | D4⋊2S3 | C3×Dic3 | S3×C6 | C3⋊C8 | Dic6 | C4×S3 | D12 | C3×D4 | Dic3 | D6 | C32 | D4 | C6 | C4 | C3 | C3 | C2 | C1 |
# reps | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 1 |
Matrix representation of Dic6⋊3D6 ►in GL8(𝔽73)
72 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
72 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 72 | 72 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 72 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 72 | 72 | 1 | 2 |
0 | 0 | 0 | 0 | 0 | 1 | 72 | 72 |
1 | 1 | 2 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 72 | 0 | 0 | 0 | 0 | 0 |
0 | 72 | 72 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 23 | 50 | 57 | 0 |
0 | 0 | 0 | 0 | 34 | 34 | 16 | 32 |
0 | 0 | 0 | 0 | 39 | 23 | 27 | 27 |
0 | 0 | 0 | 0 | 34 | 11 | 23 | 62 |
1 | 1 | 1 | 2 | 0 | 0 | 0 | 0 |
1 | 1 | 2 | 1 | 0 | 0 | 0 | 0 |
0 | 72 | 72 | 72 | 0 | 0 | 0 | 0 |
72 | 72 | 72 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 39 | 23 | 27 | 27 |
0 | 0 | 0 | 0 | 23 | 39 | 0 | 27 |
0 | 0 | 0 | 0 | 23 | 50 | 57 | 0 |
0 | 0 | 0 | 0 | 39 | 62 | 50 | 11 |
72 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
72 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 72 | 72 | 72 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 72 | 72 | 1 | 2 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 72 |
G:=sub<GL(8,GF(73))| [72,72,1,0,0,0,0,0,1,0,0,72,0,0,0,0,0,0,0,72,0,0,0,0,0,0,1,72,0,0,0,0,0,0,0,0,0,72,72,0,0,0,0,0,1,0,72,1,0,0,0,0,0,0,1,72,0,0,0,0,0,0,2,72],[1,0,0,0,0,0,0,0,1,0,0,72,0,0,0,0,2,1,72,72,0,0,0,0,1,72,0,0,0,0,0,0,0,0,0,0,23,34,39,34,0,0,0,0,50,34,23,11,0,0,0,0,57,16,27,23,0,0,0,0,0,32,27,62],[1,1,0,72,0,0,0,0,1,1,72,72,0,0,0,0,1,2,72,72,0,0,0,0,2,1,72,72,0,0,0,0,0,0,0,0,39,23,23,39,0,0,0,0,23,39,50,62,0,0,0,0,27,0,57,50,0,0,0,0,27,27,0,11],[72,72,0,1,0,0,0,0,0,1,72,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,72,1,0,0,0,0,0,0,0,0,1,0,72,1,0,0,0,0,0,72,72,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,2,72] >;
Dic6⋊3D6 in GAP, Magma, Sage, TeX
{\rm Dic}_6\rtimes_3D_6
% in TeX
G:=Group("Dic6:3D6");
// GroupNames label
G:=SmallGroup(288,573);
// by ID
G=gap.SmallGroup(288,573);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,422,135,346,185,80,1356,9414]);
// Polycyclic
G:=Group<a,b,c,d|a^12=c^6=d^2=1,b^2=a^6,b*a*b^-1=d*a*d=a^-1,c*a*c^-1=a^5,c*b*c^-1=a^6*b,d*b*d=a^9*b,d*c*d=c^-1>;
// generators/relations