# Extensions 1→N→G→Q→1 with N=C3×C4.A4 and Q=C2

Direct product G=N×Q with N=C3×C4.A4 and Q=C2
dρLabelID
C6×C4.A496C6xC4.A4288,983

Semidirect products G=N:Q with N=C3×C4.A4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×C4.A4)⋊1C2 = C12.14S4φ: C2/C1C2 ⊆ Out C3×C4.A4484(C3xC4.A4):1C2288,914
(C3×C4.A4)⋊2C2 = C12.7S4φ: C2/C1C2 ⊆ Out C3×C4.A4484+(C3xC4.A4):2C2288,915
(C3×C4.A4)⋊3C2 = Dic6.A4φ: C2/C1C2 ⊆ Out C3×C4.A4724+(C3xC4.A4):3C2288,924
(C3×C4.A4)⋊4C2 = S3×C4.A4φ: C2/C1C2 ⊆ Out C3×C4.A4484(C3xC4.A4):4C2288,925
(C3×C4.A4)⋊5C2 = D12.A4φ: C2/C1C2 ⊆ Out C3×C4.A4484-(C3xC4.A4):5C2288,926
(C3×C4.A4)⋊6C2 = C3×C4.3S4φ: C2/C1C2 ⊆ Out C3×C4.A4484(C3xC4.A4):6C2288,904
(C3×C4.A4)⋊7C2 = C3×C4.6S4φ: C2/C1C2 ⊆ Out C3×C4.A4482(C3xC4.A4):7C2288,903
(C3×C4.A4)⋊8C2 = C3×Q8.A4φ: C2/C1C2 ⊆ Out C3×C4.A4724(C3xC4.A4):8C2288,984
(C3×C4.A4)⋊9C2 = C3×D4.A4φ: C2/C1C2 ⊆ Out C3×C4.A4484(C3xC4.A4):9C2288,985

Non-split extensions G=N.Q with N=C3×C4.A4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×C4.A4).1C2 = C3⋊U2(𝔽3)φ: C2/C1C2 ⊆ Out C3×C4.A4724(C3xC4.A4).1C2288,404
(C3×C4.A4).2C2 = SL2(𝔽3).Dic3φ: C2/C1C2 ⊆ Out C3×C4.A4964(C3xC4.A4).2C2288,410
(C3×C4.A4).3C2 = C12.6S4φ: C2/C1C2 ⊆ Out C3×C4.A4964-(C3xC4.A4).3C2288,913
(C3×C4.A4).4C2 = C3×C4.S4φ: C2/C1C2 ⊆ Out C3×C4.A4964(C3xC4.A4).4C2288,902
(C3×C4.A4).5C2 = C3×U2(𝔽3)φ: C2/C1C2 ⊆ Out C3×C4.A4722(C3xC4.A4).5C2288,400
(C3×C4.A4).6C2 = C3×C8.A4φ: trivial image962(C3xC4.A4).6C2288,638

׿
×
𝔽