Extensions 1→N→G→Q→1 with N=C3xC4.A4 and Q=C2

Direct product G=NxQ with N=C3xC4.A4 and Q=C2
dρLabelID
C6xC4.A496C6xC4.A4288,983

Semidirect products G=N:Q with N=C3xC4.A4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3xC4.A4):1C2 = C12.14S4φ: C2/C1C2 ⊆ Out C3xC4.A4484(C3xC4.A4):1C2288,914
(C3xC4.A4):2C2 = C12.7S4φ: C2/C1C2 ⊆ Out C3xC4.A4484+(C3xC4.A4):2C2288,915
(C3xC4.A4):3C2 = Dic6.A4φ: C2/C1C2 ⊆ Out C3xC4.A4724+(C3xC4.A4):3C2288,924
(C3xC4.A4):4C2 = S3xC4.A4φ: C2/C1C2 ⊆ Out C3xC4.A4484(C3xC4.A4):4C2288,925
(C3xC4.A4):5C2 = D12.A4φ: C2/C1C2 ⊆ Out C3xC4.A4484-(C3xC4.A4):5C2288,926
(C3xC4.A4):6C2 = C3xC4.3S4φ: C2/C1C2 ⊆ Out C3xC4.A4484(C3xC4.A4):6C2288,904
(C3xC4.A4):7C2 = C3xC4.6S4φ: C2/C1C2 ⊆ Out C3xC4.A4482(C3xC4.A4):7C2288,903
(C3xC4.A4):8C2 = C3xQ8.A4φ: C2/C1C2 ⊆ Out C3xC4.A4724(C3xC4.A4):8C2288,984
(C3xC4.A4):9C2 = C3xD4.A4φ: C2/C1C2 ⊆ Out C3xC4.A4484(C3xC4.A4):9C2288,985

Non-split extensions G=N.Q with N=C3xC4.A4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3xC4.A4).1C2 = C3:U2(F3)φ: C2/C1C2 ⊆ Out C3xC4.A4724(C3xC4.A4).1C2288,404
(C3xC4.A4).2C2 = SL2(F3).Dic3φ: C2/C1C2 ⊆ Out C3xC4.A4964(C3xC4.A4).2C2288,410
(C3xC4.A4).3C2 = C12.6S4φ: C2/C1C2 ⊆ Out C3xC4.A4964-(C3xC4.A4).3C2288,913
(C3xC4.A4).4C2 = C3xC4.S4φ: C2/C1C2 ⊆ Out C3xC4.A4964(C3xC4.A4).4C2288,902
(C3xC4.A4).5C2 = C3xU2(F3)φ: C2/C1C2 ⊆ Out C3xC4.A4722(C3xC4.A4).5C2288,400
(C3xC4.A4).6C2 = C3xC8.A4φ: trivial image962(C3xC4.A4).6C2288,638

׿
x
:
Z
F
o
wr
Q
<