Copied to
clipboard

## G = C3×C4.3S4order 288 = 25·32

### Direct product of C3 and C4.3S4

Series: Derived Chief Lower central Upper central

 Derived series C1 — C2 — Q8 — SL2(𝔽3) — C3×C4.3S4
 Chief series C1 — C2 — Q8 — SL2(𝔽3) — C3×SL2(𝔽3) — C3×GL2(𝔽3) — C3×C4.3S4
 Lower central SL2(𝔽3) — C3×C4.3S4
 Upper central C1 — C6 — C12

Generators and relations for C3×C4.3S4
G = < a,b,c,d,e,f | a3=b4=e3=f2=1, c2=d2=b2, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, fbf=b-1, dcd-1=b2c, ece-1=b2cd, fcf=cd, ede-1=c, fdf=b2d, fef=e-1 >

Subgroups: 374 in 89 conjugacy classes, 20 normal (16 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, S3, C6, C6, C8, C2×C4, D4, Q8, C23, C32, C12, C12, D6, C2×C6, M4(2), D8, SD16, C2×D4, C4○D4, C3×S3, C3×C6, C24, SL2(𝔽3), SL2(𝔽3), D12, C2×C12, C3×D4, C3×Q8, C22×C6, C8⋊C22, C3×C12, S3×C6, C3×M4(2), C3×D8, C3×SD16, GL2(𝔽3), C4.A4, C4.A4, C6×D4, C3×C4○D4, C3×SL2(𝔽3), C3×D12, C3×C8⋊C22, C4.3S4, C3×GL2(𝔽3), C3×C4.A4, C3×C4.3S4
Quotients: C1, C2, C3, C22, S3, C6, D6, C2×C6, C3×S3, S4, S3×C6, C2×S4, C3×S4, C4.3S4, C6×S4, C3×C4.3S4

Smallest permutation representation of C3×C4.3S4
On 48 points
Generators in S48
(1 31 35)(2 32 36)(3 29 33)(4 30 34)(5 14 10)(6 15 11)(7 16 12)(8 13 9)(17 27 21)(18 28 22)(19 25 23)(20 26 24)(37 45 41)(38 46 42)(39 47 43)(40 48 44)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)
(1 37 3 39)(2 38 4 40)(5 28 7 26)(6 25 8 27)(9 17 11 19)(10 18 12 20)(13 21 15 23)(14 22 16 24)(29 47 31 45)(30 48 32 46)(33 43 35 41)(34 44 36 42)
(1 17 3 19)(2 18 4 20)(5 48 7 46)(6 45 8 47)(9 39 11 37)(10 40 12 38)(13 43 15 41)(14 44 16 42)(21 33 23 35)(22 34 24 36)(25 31 27 29)(26 32 28 30)
(5 48 26)(6 45 27)(7 46 28)(8 47 25)(9 39 19)(10 40 20)(11 37 17)(12 38 18)(13 43 23)(14 44 24)(15 41 21)(16 42 22)
(2 4)(5 48)(6 47)(7 46)(8 45)(9 37)(10 40)(11 39)(12 38)(13 41)(14 44)(15 43)(16 42)(17 19)(21 23)(25 27)(30 32)(34 36)

G:=sub<Sym(48)| (1,31,35)(2,32,36)(3,29,33)(4,30,34)(5,14,10)(6,15,11)(7,16,12)(8,13,9)(17,27,21)(18,28,22)(19,25,23)(20,26,24)(37,45,41)(38,46,42)(39,47,43)(40,48,44), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,37,3,39)(2,38,4,40)(5,28,7,26)(6,25,8,27)(9,17,11,19)(10,18,12,20)(13,21,15,23)(14,22,16,24)(29,47,31,45)(30,48,32,46)(33,43,35,41)(34,44,36,42), (1,17,3,19)(2,18,4,20)(5,48,7,46)(6,45,8,47)(9,39,11,37)(10,40,12,38)(13,43,15,41)(14,44,16,42)(21,33,23,35)(22,34,24,36)(25,31,27,29)(26,32,28,30), (5,48,26)(6,45,27)(7,46,28)(8,47,25)(9,39,19)(10,40,20)(11,37,17)(12,38,18)(13,43,23)(14,44,24)(15,41,21)(16,42,22), (2,4)(5,48)(6,47)(7,46)(8,45)(9,37)(10,40)(11,39)(12,38)(13,41)(14,44)(15,43)(16,42)(17,19)(21,23)(25,27)(30,32)(34,36)>;

G:=Group( (1,31,35)(2,32,36)(3,29,33)(4,30,34)(5,14,10)(6,15,11)(7,16,12)(8,13,9)(17,27,21)(18,28,22)(19,25,23)(20,26,24)(37,45,41)(38,46,42)(39,47,43)(40,48,44), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,37,3,39)(2,38,4,40)(5,28,7,26)(6,25,8,27)(9,17,11,19)(10,18,12,20)(13,21,15,23)(14,22,16,24)(29,47,31,45)(30,48,32,46)(33,43,35,41)(34,44,36,42), (1,17,3,19)(2,18,4,20)(5,48,7,46)(6,45,8,47)(9,39,11,37)(10,40,12,38)(13,43,15,41)(14,44,16,42)(21,33,23,35)(22,34,24,36)(25,31,27,29)(26,32,28,30), (5,48,26)(6,45,27)(7,46,28)(8,47,25)(9,39,19)(10,40,20)(11,37,17)(12,38,18)(13,43,23)(14,44,24)(15,41,21)(16,42,22), (2,4)(5,48)(6,47)(7,46)(8,45)(9,37)(10,40)(11,39)(12,38)(13,41)(14,44)(15,43)(16,42)(17,19)(21,23)(25,27)(30,32)(34,36) );

G=PermutationGroup([[(1,31,35),(2,32,36),(3,29,33),(4,30,34),(5,14,10),(6,15,11),(7,16,12),(8,13,9),(17,27,21),(18,28,22),(19,25,23),(20,26,24),(37,45,41),(38,46,42),(39,47,43),(40,48,44)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48)], [(1,37,3,39),(2,38,4,40),(5,28,7,26),(6,25,8,27),(9,17,11,19),(10,18,12,20),(13,21,15,23),(14,22,16,24),(29,47,31,45),(30,48,32,46),(33,43,35,41),(34,44,36,42)], [(1,17,3,19),(2,18,4,20),(5,48,7,46),(6,45,8,47),(9,39,11,37),(10,40,12,38),(13,43,15,41),(14,44,16,42),(21,33,23,35),(22,34,24,36),(25,31,27,29),(26,32,28,30)], [(5,48,26),(6,45,27),(7,46,28),(8,47,25),(9,39,19),(10,40,20),(11,37,17),(12,38,18),(13,43,23),(14,44,24),(15,41,21),(16,42,22)], [(2,4),(5,48),(6,47),(7,46),(8,45),(9,37),(10,40),(11,39),(12,38),(13,41),(14,44),(15,43),(16,42),(17,19),(21,23),(25,27),(30,32),(34,36)]])

39 conjugacy classes

 class 1 2A 2B 2C 2D 3A 3B 3C 3D 3E 4A 4B 6A 6B 6C 6D 6E 6F 6G 6H 6I 6J 6K 8A 8B 12A 12B 12C 12D 12E ··· 12J 24A 24B 24C 24D order 1 2 2 2 2 3 3 3 3 3 4 4 6 6 6 6 6 6 6 6 6 6 6 8 8 12 12 12 12 12 ··· 12 24 24 24 24 size 1 1 6 12 12 1 1 8 8 8 2 6 1 1 6 6 8 8 8 12 12 12 12 12 12 2 2 6 6 8 ··· 8 12 12 12 12

39 irreducible representations

 dim 1 1 1 1 1 1 2 2 2 2 3 3 3 3 4 4 type + + + + + + + + image C1 C2 C2 C3 C6 C6 S3 D6 C3×S3 S3×C6 S4 C2×S4 C3×S4 C6×S4 C4.3S4 C3×C4.3S4 kernel C3×C4.3S4 C3×GL2(𝔽3) C3×C4.A4 C4.3S4 GL2(𝔽3) C4.A4 C3×C4○D4 C3×Q8 C4○D4 Q8 C12 C6 C4 C2 C3 C1 # reps 1 2 1 2 4 2 1 1 2 2 2 2 4 4 3 6

Matrix representation of C3×C4.3S4 in GL4(𝔽7) generated by

 4 0 0 0 0 4 0 0 0 0 4 0 0 0 0 4
,
 2 6 6 6 0 5 2 5 6 4 6 6 6 3 4 1
,
 5 1 6 4 0 2 2 3 2 2 6 6 1 4 4 1
,
 0 3 4 1 2 6 0 4 6 3 4 3 4 5 5 4
,
 5 0 5 4 6 0 5 1 6 3 2 1 4 5 4 5
,
 2 6 6 6 4 3 0 1 5 6 1 3 1 3 4 1
G:=sub<GL(4,GF(7))| [4,0,0,0,0,4,0,0,0,0,4,0,0,0,0,4],[2,0,6,6,6,5,4,3,6,2,6,4,6,5,6,1],[5,0,2,1,1,2,2,4,6,2,6,4,4,3,6,1],[0,2,6,4,3,6,3,5,4,0,4,5,1,4,3,4],[5,6,6,4,0,0,3,5,5,5,2,4,4,1,1,5],[2,4,5,1,6,3,6,3,6,0,1,4,6,1,3,1] >;

C3×C4.3S4 in GAP, Magma, Sage, TeX

C_3\times C_4._3S_4
% in TeX

G:=Group("C3xC4.3S4");
// GroupNames label

G:=SmallGroup(288,904);
// by ID

G=gap.SmallGroup(288,904);
# by ID

G:=PCGroup([7,-2,-2,-3,-3,-2,2,-2,2045,1016,675,2524,655,172,1517,404,285,124]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^3=b^4=e^3=f^2=1,c^2=d^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,f*b*f=b^-1,d*c*d^-1=b^2*c,e*c*e^-1=b^2*c*d,f*c*f=c*d,e*d*e^-1=c,f*d*f=b^2*d,f*e*f=e^-1>;
// generators/relations

׿
×
𝔽