Extensions 1→N→G→Q→1 with N=C3×S3×D4 and Q=C2

Direct product G=N×Q with N=C3×S3×D4 and Q=C2
dρLabelID
S3×C6×D448S3xC6xD4288,992

Semidirect products G=N:Q with N=C3×S3×D4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×S3×D4)⋊1C2 = S3×D4⋊S3φ: C2/C1C2 ⊆ Out C3×S3×D4488+(C3xS3xD4):1C2288,572
(C3×S3×D4)⋊2C2 = D129D6φ: C2/C1C2 ⊆ Out C3×S3×D4488-(C3xS3xD4):2C2288,580
(C3×S3×D4)⋊3C2 = D12.7D6φ: C2/C1C2 ⊆ Out C3×S3×D4488+(C3xS3xD4):3C2288,582
(C3×S3×D4)⋊4C2 = C3×S3×D8φ: C2/C1C2 ⊆ Out C3×S3×D4484(C3xS3xD4):4C2288,681
(C3×S3×D4)⋊5C2 = C3×D8⋊S3φ: C2/C1C2 ⊆ Out C3×S3×D4484(C3xS3xD4):5C2288,682
(C3×S3×D4)⋊6C2 = C3×Q83D6φ: C2/C1C2 ⊆ Out C3×S3×D4484(C3xS3xD4):6C2288,685
(C3×S3×D4)⋊7C2 = S32×D4φ: C2/C1C2 ⊆ Out C3×S3×D4248+(C3xS3xD4):7C2288,958
(C3×S3×D4)⋊8C2 = S3×D42S3φ: C2/C1C2 ⊆ Out C3×S3×D4488-(C3xS3xD4):8C2288,959
(C3×S3×D4)⋊9C2 = D1212D6φ: C2/C1C2 ⊆ Out C3×S3×D4488-(C3xS3xD4):9C2288,961
(C3×S3×D4)⋊10C2 = D1213D6φ: C2/C1C2 ⊆ Out C3×S3×D4248+(C3xS3xD4):10C2288,962
(C3×S3×D4)⋊11C2 = C3×D46D6φ: C2/C1C2 ⊆ Out C3×S3×D4244(C3xS3xD4):11C2288,994
(C3×S3×D4)⋊12C2 = C3×D4○D12φ: C2/C1C2 ⊆ Out C3×S3×D4484(C3xS3xD4):12C2288,999
(C3×S3×D4)⋊13C2 = C3×S3×C4○D4φ: trivial image484(C3xS3xD4):13C2288,998

Non-split extensions G=N.Q with N=C3×S3×D4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×S3×D4).1C2 = S3×D4.S3φ: C2/C1C2 ⊆ Out C3×S3×D4488-(C3xS3xD4).1C2288,576
(C3×S3×D4).2C2 = C3×S3×SD16φ: C2/C1C2 ⊆ Out C3×S3×D4484(C3xS3xD4).2C2288,684

׿
×
𝔽