Extensions 1→N→G→Q→1 with N=C3xS3xD4 and Q=C2

Direct product G=NxQ with N=C3xS3xD4 and Q=C2
dρLabelID
S3xC6xD448S3xC6xD4288,992

Semidirect products G=N:Q with N=C3xS3xD4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3xS3xD4):1C2 = S3xD4:S3φ: C2/C1C2 ⊆ Out C3xS3xD4488+(C3xS3xD4):1C2288,572
(C3xS3xD4):2C2 = D12:9D6φ: C2/C1C2 ⊆ Out C3xS3xD4488-(C3xS3xD4):2C2288,580
(C3xS3xD4):3C2 = D12.7D6φ: C2/C1C2 ⊆ Out C3xS3xD4488+(C3xS3xD4):3C2288,582
(C3xS3xD4):4C2 = C3xS3xD8φ: C2/C1C2 ⊆ Out C3xS3xD4484(C3xS3xD4):4C2288,681
(C3xS3xD4):5C2 = C3xD8:S3φ: C2/C1C2 ⊆ Out C3xS3xD4484(C3xS3xD4):5C2288,682
(C3xS3xD4):6C2 = C3xQ8:3D6φ: C2/C1C2 ⊆ Out C3xS3xD4484(C3xS3xD4):6C2288,685
(C3xS3xD4):7C2 = S32xD4φ: C2/C1C2 ⊆ Out C3xS3xD4248+(C3xS3xD4):7C2288,958
(C3xS3xD4):8C2 = S3xD4:2S3φ: C2/C1C2 ⊆ Out C3xS3xD4488-(C3xS3xD4):8C2288,959
(C3xS3xD4):9C2 = D12:12D6φ: C2/C1C2 ⊆ Out C3xS3xD4488-(C3xS3xD4):9C2288,961
(C3xS3xD4):10C2 = D12:13D6φ: C2/C1C2 ⊆ Out C3xS3xD4248+(C3xS3xD4):10C2288,962
(C3xS3xD4):11C2 = C3xD4:6D6φ: C2/C1C2 ⊆ Out C3xS3xD4244(C3xS3xD4):11C2288,994
(C3xS3xD4):12C2 = C3xD4oD12φ: C2/C1C2 ⊆ Out C3xS3xD4484(C3xS3xD4):12C2288,999
(C3xS3xD4):13C2 = C3xS3xC4oD4φ: trivial image484(C3xS3xD4):13C2288,998

Non-split extensions G=N.Q with N=C3xS3xD4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3xS3xD4).1C2 = S3xD4.S3φ: C2/C1C2 ⊆ Out C3xS3xD4488-(C3xS3xD4).1C2288,576
(C3xS3xD4).2C2 = C3xS3xSD16φ: C2/C1C2 ⊆ Out C3xS3xD4484(C3xS3xD4).2C2288,684

׿
x
:
Z
F
o
wr
Q
<