Copied to
clipboard

G = D1212D6order 288 = 25·32

6th semidirect product of D12 and D6 acting via D6/S3=C2

metabelian, supersoluble, monomial

Aliases: D1212D6, C62.4C23, C3232+ 1+4, D47S32, (C4×S3)⋊3D6, (S3×D4)⋊4S3, C3⋊D44D6, (C3×D4)⋊10D6, (C22×S3)⋊6D6, D6⋊D612C2, C32(D46D6), (S3×C12)⋊7C22, D6.4D66C2, D6.D66C2, C6.20(S3×C23), (C3×C6).20C24, D125S310C2, C12.D68C2, (C3×D12)⋊14C22, (S3×C6).11C23, (C3×C12).32C23, C12.32(C22×S3), (S3×Dic3)⋊2C22, D6.21(C22×S3), C327D44C22, D6⋊S314C22, C3⋊D1215C22, C322Q813C22, (D4×C32)⋊12C22, C3⋊Dic3.22C23, C324Q810C22, Dic3.10(C22×S3), (C3×Dic3).14C23, (C3×S3×D4)⋊9C2, C4.32(C2×S32), (C2×S32)⋊4C22, (S3×C3⋊D4)⋊4C2, C22.4(C2×S32), (C4×C3⋊S3)⋊4C22, (S3×C2×C6)⋊10C22, C2.22(C22×S32), (C3×C3⋊D4)⋊4C22, (C2×C6).5(C22×S3), (C2×D6⋊S3)⋊15C2, (C2×C3⋊S3).25C23, (C2×C3⋊Dic3)⋊11C22, SmallGroup(288,961)

Series: Derived Chief Lower central Upper central

C1C3×C6 — D1212D6
C1C3C32C3×C6S3×C6C2×S32S3×C3⋊D4 — D1212D6
C32C3×C6 — D1212D6
C1C2D4

Generators and relations for D1212D6
 G = < a,b,c,d | a12=b2=c6=d2=1, bab=a-1, cac-1=a7, ad=da, bc=cb, dbd=a6b, dcd=c-1 >

Subgroups: 1338 in 352 conjugacy classes, 108 normal (18 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, C22, S3, C6, C6, C2×C4, D4, D4, Q8, C23, C32, Dic3, Dic3, C12, C12, D6, D6, C2×C6, C2×C6, C2×D4, C4○D4, C3×S3, C3⋊S3, C3×C6, C3×C6, Dic6, C4×S3, C4×S3, D12, D12, C2×Dic3, C3⋊D4, C3⋊D4, C2×C12, C3×D4, C3×D4, C22×S3, C22×S3, C22×C6, 2+ 1+4, C3×Dic3, C3⋊Dic3, C3⋊Dic3, C3×C12, S32, S3×C6, S3×C6, C2×C3⋊S3, C62, C4○D12, S3×D4, S3×D4, D42S3, C2×C3⋊D4, C6×D4, S3×Dic3, D6⋊S3, D6⋊S3, C3⋊D12, C322Q8, S3×C12, C3×D12, C3×C3⋊D4, C324Q8, C4×C3⋊S3, C2×C3⋊Dic3, C327D4, D4×C32, C2×S32, S3×C2×C6, D46D6, D125S3, D6.D6, D6⋊D6, D6.4D6, C2×D6⋊S3, S3×C3⋊D4, C3×S3×D4, C12.D6, D1212D6
Quotients: C1, C2, C22, S3, C23, D6, C24, C22×S3, 2+ 1+4, S32, S3×C23, C2×S32, D46D6, C22×S32, D1212D6

Smallest permutation representation of D1212D6
On 48 points
Generators in S48
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 16)(2 15)(3 14)(4 13)(5 24)(6 23)(7 22)(8 21)(9 20)(10 19)(11 18)(12 17)(25 47)(26 46)(27 45)(28 44)(29 43)(30 42)(31 41)(32 40)(33 39)(34 38)(35 37)(36 48)
(1 27 5 31 9 35)(2 34 6 26 10 30)(3 29 7 33 11 25)(4 36 8 28 12 32)(13 48 21 44 17 40)(14 43 22 39 18 47)(15 38 23 46 19 42)(16 45 24 41 20 37)
(1 44)(2 45)(3 46)(4 47)(5 48)(6 37)(7 38)(8 39)(9 40)(10 41)(11 42)(12 43)(13 31)(14 32)(15 33)(16 34)(17 35)(18 36)(19 25)(20 26)(21 27)(22 28)(23 29)(24 30)

G:=sub<Sym(48)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,16)(2,15)(3,14)(4,13)(5,24)(6,23)(7,22)(8,21)(9,20)(10,19)(11,18)(12,17)(25,47)(26,46)(27,45)(28,44)(29,43)(30,42)(31,41)(32,40)(33,39)(34,38)(35,37)(36,48), (1,27,5,31,9,35)(2,34,6,26,10,30)(3,29,7,33,11,25)(4,36,8,28,12,32)(13,48,21,44,17,40)(14,43,22,39,18,47)(15,38,23,46,19,42)(16,45,24,41,20,37), (1,44)(2,45)(3,46)(4,47)(5,48)(6,37)(7,38)(8,39)(9,40)(10,41)(11,42)(12,43)(13,31)(14,32)(15,33)(16,34)(17,35)(18,36)(19,25)(20,26)(21,27)(22,28)(23,29)(24,30)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,16)(2,15)(3,14)(4,13)(5,24)(6,23)(7,22)(8,21)(9,20)(10,19)(11,18)(12,17)(25,47)(26,46)(27,45)(28,44)(29,43)(30,42)(31,41)(32,40)(33,39)(34,38)(35,37)(36,48), (1,27,5,31,9,35)(2,34,6,26,10,30)(3,29,7,33,11,25)(4,36,8,28,12,32)(13,48,21,44,17,40)(14,43,22,39,18,47)(15,38,23,46,19,42)(16,45,24,41,20,37), (1,44)(2,45)(3,46)(4,47)(5,48)(6,37)(7,38)(8,39)(9,40)(10,41)(11,42)(12,43)(13,31)(14,32)(15,33)(16,34)(17,35)(18,36)(19,25)(20,26)(21,27)(22,28)(23,29)(24,30) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,16),(2,15),(3,14),(4,13),(5,24),(6,23),(7,22),(8,21),(9,20),(10,19),(11,18),(12,17),(25,47),(26,46),(27,45),(28,44),(29,43),(30,42),(31,41),(32,40),(33,39),(34,38),(35,37),(36,48)], [(1,27,5,31,9,35),(2,34,6,26,10,30),(3,29,7,33,11,25),(4,36,8,28,12,32),(13,48,21,44,17,40),(14,43,22,39,18,47),(15,38,23,46,19,42),(16,45,24,41,20,37)], [(1,44),(2,45),(3,46),(4,47),(5,48),(6,37),(7,38),(8,39),(9,40),(10,41),(11,42),(12,43),(13,31),(14,32),(15,33),(16,34),(17,35),(18,36),(19,25),(20,26),(21,27),(22,28),(23,29),(24,30)]])

42 conjugacy classes

class 1 2A2B2C2D···2I2J3A3B3C4A4B4C4D4E4F6A6B6C···6G6H6I6J6K6L6M6N6O6P6Q12A12B12C12D12E
order12222···22333444444666···666666666661212121212
size11226···618224266181818224···4666688121212124481212

42 irreducible representations

dim111111111222222444448
type+++++++++++++++++++-
imageC1C2C2C2C2C2C2C2C2S3D6D6D6D6D62+ 1+4S32C2×S32C2×S32D46D6D1212D6
kernelD1212D6D125S3D6.D6D6⋊D6D6.4D6C2×D6⋊S3S3×C3⋊D4C3×S3×D4C12.D6S3×D4C4×S3D12C3⋊D4C3×D4C22×S3C32D4C4C22C3C1
# reps121122421222424111241

Matrix representation of D1212D6 in GL6(𝔽13)

1200000
0120000
00911126
0021176
006342
00103112
,
100000
010000
00121200
000100
00001212
000001
,
1210000
1200000
0012000
0001200
008010
000801
,
100000
1120000
0011900
004200
0000119
000042

G:=sub<GL(6,GF(13))| [12,0,0,0,0,0,0,12,0,0,0,0,0,0,9,2,6,10,0,0,11,11,3,3,0,0,12,7,4,11,0,0,6,6,2,2],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,12,1,0,0,0,0,0,0,12,0,0,0,0,0,12,1],[12,12,0,0,0,0,1,0,0,0,0,0,0,0,12,0,8,0,0,0,0,12,0,8,0,0,0,0,1,0,0,0,0,0,0,1],[1,1,0,0,0,0,0,12,0,0,0,0,0,0,11,4,0,0,0,0,9,2,0,0,0,0,0,0,11,4,0,0,0,0,9,2] >;

D1212D6 in GAP, Magma, Sage, TeX

D_{12}\rtimes_{12}D_6
% in TeX

G:=Group("D12:12D6");
// GroupNames label

G:=SmallGroup(288,961);
// by ID

G=gap.SmallGroup(288,961);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,219,675,185,1356,9414]);
// Polycyclic

G:=Group<a,b,c,d|a^12=b^2=c^6=d^2=1,b*a*b=a^-1,c*a*c^-1=a^7,a*d=d*a,b*c=c*b,d*b*d=a^6*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽