Extensions 1→N→G→Q→1 with N=C3xC8:S3 and Q=C2

Direct product G=NxQ with N=C3xC8:S3 and Q=C2
dρLabelID
C6xC8:S396C6xC8:S3288,671

Semidirect products G=N:Q with N=C3xC8:S3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3xC8:S3):1C2 = D24:S3φ: C2/C1C2 ⊆ Out C3xC8:S3484(C3xC8:S3):1C2288,443
(C3xC8:S3):2C2 = Dic12:S3φ: C2/C1C2 ⊆ Out C3xC8:S3484(C3xC8:S3):2C2288,449
(C3xC8:S3):3C2 = C24:1D6φ: C2/C1C2 ⊆ Out C3xC8:S3484+(C3xC8:S3):3C2288,442
(C3xC8:S3):4C2 = C24.3D6φ: C2/C1C2 ⊆ Out C3xC8:S3964-(C3xC8:S3):4C2288,448
(C3xC8:S3):5C2 = C3xQ8:3D6φ: C2/C1C2 ⊆ Out C3xC8:S3484(C3xC8:S3):5C2288,685
(C3xC8:S3):6C2 = C3xD4.D6φ: C2/C1C2 ⊆ Out C3xC8:S3484(C3xC8:S3):6C2288,686
(C3xC8:S3):7C2 = C3xD8:S3φ: C2/C1C2 ⊆ Out C3xC8:S3484(C3xC8:S3):7C2288,682
(C3xC8:S3):8C2 = C3xQ16:S3φ: C2/C1C2 ⊆ Out C3xC8:S3964(C3xC8:S3):8C2288,689
(C3xC8:S3):9C2 = S3xC8:S3φ: C2/C1C2 ⊆ Out C3xC8:S3484(C3xC8:S3):9C2288,438
(C3xC8:S3):10C2 = C24:D6φ: C2/C1C2 ⊆ Out C3xC8:S3484(C3xC8:S3):10C2288,439
(C3xC8:S3):11C2 = C24.64D6φ: C2/C1C2 ⊆ Out C3xC8:S3484(C3xC8:S3):11C2288,452
(C3xC8:S3):12C2 = C24.D6φ: C2/C1C2 ⊆ Out C3xC8:S3484(C3xC8:S3):12C2288,453
(C3xC8:S3):13C2 = C3xS3xM4(2)φ: C2/C1C2 ⊆ Out C3xC8:S3484(C3xC8:S3):13C2288,677
(C3xC8:S3):14C2 = C3xD12.C4φ: C2/C1C2 ⊆ Out C3xC8:S3484(C3xC8:S3):14C2288,678
(C3xC8:S3):15C2 = C3xC8oD12φ: trivial image482(C3xC8:S3):15C2288,672


׿
x
:
Z
F
o
wr
Q
<