Copied to
clipboard

G = C3×D12.C4order 288 = 25·32

Direct product of C3 and D12.C4

direct product, metabelian, supersoluble, monomial

Aliases: C3×D12.C4, D12.C12, C24.66D6, Dic6.C12, (S3×C8)⋊8C6, C3⋊D4.C12, C8⋊S36C6, C8.12(S3×C6), C4.5(S3×C12), (S3×C24)⋊17C2, C12.53(C4×S3), C24.15(C2×C6), C4○D12.3C6, (C3×D12).3C4, D6.2(C2×C12), C12.13(C2×C12), (C2×C12).322D6, C3211(C8○D4), M4(2)⋊5(C3×S3), (C3×M4(2))⋊6C6, C62.60(C2×C4), C22.1(S3×C12), (C3×Dic6).3C4, (C3×M4(2))⋊11S3, C12.39(C22×C6), (C3×C24).48C22, C6.16(C22×C12), Dic3.4(C2×C12), (S3×C12).60C22, (C3×C12).171C23, (C6×C12).114C22, C12.227(C22×S3), (C32×M4(2))⋊8C2, (C2×C3⋊C8)⋊3C6, (C6×C3⋊C8)⋊24C2, C32(C3×C8○D4), C4.39(S3×C2×C6), C3⋊C8.12(C2×C6), C2.17(S3×C2×C12), C6.115(S3×C2×C4), (C2×C6).6(C2×C12), (C2×C6).24(C4×S3), (C2×C4).46(S3×C6), (C3×C3⋊D4).3C4, (C3×C8⋊S3)⋊14C2, (C4×S3).17(C2×C6), (S3×C6).14(C2×C4), (C3×C12).68(C2×C4), (C2×C12).25(C2×C6), (C3×C4○D12).9C2, (C3×C3⋊C8).43C22, (C3×C6).87(C22×C4), (C3×Dic3).20(C2×C4), SmallGroup(288,678)

Series: Derived Chief Lower central Upper central

C1C6 — C3×D12.C4
C1C3C6C12C3×C12S3×C12C3×C4○D12 — C3×D12.C4
C3C6 — C3×D12.C4
C1C12C3×M4(2)

Generators and relations for C3×D12.C4
 G = < a,b,c,d | a3=b12=c2=1, d4=b6, ab=ba, ac=ca, ad=da, cbc=b-1, dbd-1=b7, dcd-1=b6c >

Subgroups: 250 in 134 conjugacy classes, 74 normal (42 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, C22, S3, C6, C6, C8, C8, C2×C4, C2×C4, D4, Q8, C32, Dic3, C12, C12, D6, C2×C6, C2×C6, C2×C8, M4(2), M4(2), C4○D4, C3×S3, C3×C6, C3×C6, C3⋊C8, C24, C24, Dic6, C4×S3, D12, C3⋊D4, C2×C12, C2×C12, C3×D4, C3×Q8, C8○D4, C3×Dic3, C3×C12, S3×C6, C62, S3×C8, C8⋊S3, C2×C3⋊C8, C2×C24, C3×M4(2), C3×M4(2), C4○D12, C3×C4○D4, C3×C3⋊C8, C3×C24, C3×Dic6, S3×C12, C3×D12, C3×C3⋊D4, C6×C12, D12.C4, C3×C8○D4, S3×C24, C3×C8⋊S3, C6×C3⋊C8, C32×M4(2), C3×C4○D12, C3×D12.C4
Quotients: C1, C2, C3, C4, C22, S3, C6, C2×C4, C23, C12, D6, C2×C6, C22×C4, C3×S3, C4×S3, C2×C12, C22×S3, C22×C6, C8○D4, S3×C6, S3×C2×C4, C22×C12, S3×C12, S3×C2×C6, D12.C4, C3×C8○D4, S3×C2×C12, C3×D12.C4

Smallest permutation representation of C3×D12.C4
On 48 points
Generators in S48
(1 9 5)(2 10 6)(3 11 7)(4 12 8)(13 21 17)(14 22 18)(15 23 19)(16 24 20)(25 29 33)(26 30 34)(27 31 35)(28 32 36)(37 41 45)(38 42 46)(39 43 47)(40 44 48)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 36)(2 35)(3 34)(4 33)(5 32)(6 31)(7 30)(8 29)(9 28)(10 27)(11 26)(12 25)(13 48)(14 47)(15 46)(16 45)(17 44)(18 43)(19 42)(20 41)(21 40)(22 39)(23 38)(24 37)
(1 13 10 16 7 19 4 22)(2 20 11 23 8 14 5 17)(3 15 12 18 9 21 6 24)(25 37 28 46 31 43 34 40)(26 44 29 41 32 38 35 47)(27 39 30 48 33 45 36 42)

G:=sub<Sym(48)| (1,9,5)(2,10,6)(3,11,7)(4,12,8)(13,21,17)(14,22,18)(15,23,19)(16,24,20)(25,29,33)(26,30,34)(27,31,35)(28,32,36)(37,41,45)(38,42,46)(39,43,47)(40,44,48), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,36)(2,35)(3,34)(4,33)(5,32)(6,31)(7,30)(8,29)(9,28)(10,27)(11,26)(12,25)(13,48)(14,47)(15,46)(16,45)(17,44)(18,43)(19,42)(20,41)(21,40)(22,39)(23,38)(24,37), (1,13,10,16,7,19,4,22)(2,20,11,23,8,14,5,17)(3,15,12,18,9,21,6,24)(25,37,28,46,31,43,34,40)(26,44,29,41,32,38,35,47)(27,39,30,48,33,45,36,42)>;

G:=Group( (1,9,5)(2,10,6)(3,11,7)(4,12,8)(13,21,17)(14,22,18)(15,23,19)(16,24,20)(25,29,33)(26,30,34)(27,31,35)(28,32,36)(37,41,45)(38,42,46)(39,43,47)(40,44,48), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,36)(2,35)(3,34)(4,33)(5,32)(6,31)(7,30)(8,29)(9,28)(10,27)(11,26)(12,25)(13,48)(14,47)(15,46)(16,45)(17,44)(18,43)(19,42)(20,41)(21,40)(22,39)(23,38)(24,37), (1,13,10,16,7,19,4,22)(2,20,11,23,8,14,5,17)(3,15,12,18,9,21,6,24)(25,37,28,46,31,43,34,40)(26,44,29,41,32,38,35,47)(27,39,30,48,33,45,36,42) );

G=PermutationGroup([[(1,9,5),(2,10,6),(3,11,7),(4,12,8),(13,21,17),(14,22,18),(15,23,19),(16,24,20),(25,29,33),(26,30,34),(27,31,35),(28,32,36),(37,41,45),(38,42,46),(39,43,47),(40,44,48)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,36),(2,35),(3,34),(4,33),(5,32),(6,31),(7,30),(8,29),(9,28),(10,27),(11,26),(12,25),(13,48),(14,47),(15,46),(16,45),(17,44),(18,43),(19,42),(20,41),(21,40),(22,39),(23,38),(24,37)], [(1,13,10,16,7,19,4,22),(2,20,11,23,8,14,5,17),(3,15,12,18,9,21,6,24),(25,37,28,46,31,43,34,40),(26,44,29,41,32,38,35,47),(27,39,30,48,33,45,36,42)]])

90 conjugacy classes

class 1 2A2B2C2D3A3B3C3D3E4A4B4C4D4E6A6B6C···6G6H6I6J6K6L6M6N8A8B8C8D8E8F8G8H8I8J12A12B12C12D12E···12L12M12N12O12P12Q12R12S24A···24H24I···24P24Q···24AB24AC24AD24AE24AF
order122223333344444666···6666666688888888881212121212···121212121212121224···2424···2424···2424242424
size112661122211266112···24446666222233336611112···244466662···23···34···46666

90 irreducible representations

dim11111111111111111122222222222244
type+++++++++
imageC1C2C2C2C2C2C3C4C4C4C6C6C6C6C6C12C12C12S3D6D6C3×S3C4×S3C4×S3C8○D4S3×C6S3×C6S3×C12S3×C12C3×C8○D4D12.C4C3×D12.C4
kernelC3×D12.C4S3×C24C3×C8⋊S3C6×C3⋊C8C32×M4(2)C3×C4○D12D12.C4C3×Dic6C3×D12C3×C3⋊D4S3×C8C8⋊S3C2×C3⋊C8C3×M4(2)C4○D12Dic6D12C3⋊D4C3×M4(2)C24C2×C12M4(2)C12C2×C6C32C8C2×C4C4C22C3C3C1
# reps12211122244422244812122244244824

Matrix representation of C3×D12.C4 in GL4(𝔽73) generated by

64000
06400
0010
0001
,
65000
0900
00460
00027
,
0900
65000
00051
00630
,
46000
04600
0001
00460
G:=sub<GL(4,GF(73))| [64,0,0,0,0,64,0,0,0,0,1,0,0,0,0,1],[65,0,0,0,0,9,0,0,0,0,46,0,0,0,0,27],[0,65,0,0,9,0,0,0,0,0,0,63,0,0,51,0],[46,0,0,0,0,46,0,0,0,0,0,46,0,0,1,0] >;

C3×D12.C4 in GAP, Magma, Sage, TeX

C_3\times D_{12}.C_4
% in TeX

G:=Group("C3xD12.C4");
// GroupNames label

G:=SmallGroup(288,678);
// by ID

G=gap.SmallGroup(288,678);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-2,-2,-3,701,555,142,102,9414]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^12=c^2=1,d^4=b^6,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c=b^-1,d*b*d^-1=b^7,d*c*d^-1=b^6*c>;
// generators/relations

׿
×
𝔽