Extensions 1→N→G→Q→1 with N=C4:C4 and Q=C3:S3

Direct product G=NxQ with N=C4:C4 and Q=C3:S3
dρLabelID
C4:C4xC3:S3144C4:C4xC3:S3288,748

Semidirect products G=N:Q with N=C4:C4 and Q=C3:S3
extensionφ:Q→Out NdρLabelID
C4:C4:1(C3:S3) = C62.113D4φ: C3:S3/C32C2 ⊆ Out C4:C4144C4:C4:1(C3:S3)288,284
C4:C4:2(C3:S3) = C62.238C23φ: C3:S3/C32C2 ⊆ Out C4:C4144C4:C4:2(C3:S3)288,751
C4:C4:3(C3:S3) = C12:3D12φ: C3:S3/C32C2 ⊆ Out C4:C4144C4:C4:3(C3:S3)288,752
C4:C4:4(C3:S3) = C62.240C23φ: C3:S3/C32C2 ⊆ Out C4:C4144C4:C4:4(C3:S3)288,753
C4:C4:5(C3:S3) = C12.31D12φ: C3:S3/C32C2 ⊆ Out C4:C4144C4:C4:5(C3:S3)288,754
C4:C4:6(C3:S3) = C62.242C23φ: C3:S3/C32C2 ⊆ Out C4:C4144C4:C4:6(C3:S3)288,755
C4:C4:7(C3:S3) = C62.236C23φ: trivial image144C4:C4:7(C3:S3)288,749
C4:C4:8(C3:S3) = C62.237C23φ: trivial image144C4:C4:8(C3:S3)288,750

Non-split extensions G=N.Q with N=C4:C4 and Q=C3:S3
extensionφ:Q→Out NdρLabelID
C4:C4.1(C3:S3) = C12.9Dic6φ: C3:S3/C32C2 ⊆ Out C4:C4288C4:C4.1(C3:S3)288,282
C4:C4.2(C3:S3) = C12.10Dic6φ: C3:S3/C32C2 ⊆ Out C4:C4288C4:C4.2(C3:S3)288,283
C4:C4.3(C3:S3) = C62.114D4φ: C3:S3/C32C2 ⊆ Out C4:C4288C4:C4.3(C3:S3)288,285
C4:C4.4(C3:S3) = C12:2Dic6φ: C3:S3/C32C2 ⊆ Out C4:C4288C4:C4.4(C3:S3)288,745
C4:C4.5(C3:S3) = C62.233C23φ: C3:S3/C32C2 ⊆ Out C4:C4288C4:C4.5(C3:S3)288,746
C4:C4.6(C3:S3) = C62.234C23φ: C3:S3/C32C2 ⊆ Out C4:C4288C4:C4.6(C3:S3)288,747
C4:C4.7(C3:S3) = C62.231C23φ: trivial image288C4:C4.7(C3:S3)288,744

׿
x
:
Z
F
o
wr
Q
<