Copied to
clipboard

G = C4⋊C4order 16 = 24

The semidirect product of C4 and C4 acting via C4/C2=C2

p-group, metacyclic, nilpotent (class 2), monomial

Aliases: C4⋊C4, C2.Q8, C2.2D4, C22.3C22, C2.2(C2×C4), (C2×C4).1C2, SmallGroup(16,4)

Series: Derived Chief Lower central Upper central Jennings

C1C2 — C4⋊C4
C1C2C22C2×C4 — C4⋊C4
C1C2 — C4⋊C4
C1C22 — C4⋊C4
C1C22 — C4⋊C4

Generators and relations for C4⋊C4
 G = < a,b | a4=b4=1, bab-1=a-1 >

2C4
2C4

Character table of C4⋊C4

 class 12A2B2C4A4B4C4D4E4F
 size 1111222222
ρ11111111111    trivial
ρ21111-11-1-11-1    linear of order 2
ρ31111-1-11-1-11    linear of order 2
ρ411111-1-11-1-1    linear of order 2
ρ511-1-1-1-ii1i-i    linear of order 4
ρ611-1-11-i-i-1ii    linear of order 4
ρ711-1-1-1i-i1-ii    linear of order 4
ρ811-1-11ii-1-i-i    linear of order 4
ρ92-22-2000000    orthogonal lifted from D4
ρ102-2-22000000    symplectic lifted from Q8, Schur index 2

Permutation representations of C4⋊C4
Regular action on 16 points - transitive group 16T8
Generators in S16
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)
(1 14 12 5)(2 13 9 8)(3 16 10 7)(4 15 11 6)

G:=sub<Sym(16)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16), (1,14,12,5)(2,13,9,8)(3,16,10,7)(4,15,11,6)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16), (1,14,12,5)(2,13,9,8)(3,16,10,7)(4,15,11,6) );

G=PermutationGroup([(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16)], [(1,14,12,5),(2,13,9,8),(3,16,10,7),(4,15,11,6)])

G:=TransitiveGroup(16,8);

Matrix representation of C4⋊C4 in GL3(𝔽5) generated by

100
004
010
,
300
030
002
G:=sub<GL(3,GF(5))| [1,0,0,0,0,1,0,4,0],[3,0,0,0,3,0,0,0,2] >;

C4⋊C4 in GAP, Magma, Sage, TeX

C_4\rtimes C_4
% in TeX

G:=Group("C4:C4");
// GroupNames label

G:=SmallGroup(16,4);
// by ID

G=gap.SmallGroup(16,4);
# by ID

G:=PCGroup([4,-2,2,-2,2,32,49,21]);
// Polycyclic

G:=Group<a,b|a^4=b^4=1,b*a*b^-1=a^-1>;
// generators/relations

׿
×
𝔽