p-group, metacyclic, nilpotent (class 2), monomial
Aliases: C4⋊C4, C2.Q8, C2.2D4, C22.3C22, C2.2(C2×C4), (C2×C4).1C2, SmallGroup(16,4)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C4⋊C4
G = < a,b | a4=b4=1, bab-1=a-1 >
Character table of C4⋊C4
class | 1 | 2A | 2B | 2C | 4A | 4B | 4C | 4D | 4E | 4F | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | -1 | -1 | -1 | -i | i | 1 | i | -i | linear of order 4 |
ρ6 | 1 | 1 | -1 | -1 | 1 | -i | -i | -1 | i | i | linear of order 4 |
ρ7 | 1 | 1 | -1 | -1 | -1 | i | -i | 1 | -i | i | linear of order 4 |
ρ8 | 1 | 1 | -1 | -1 | 1 | i | i | -1 | -i | -i | linear of order 4 |
ρ9 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)
(1 14 12 5)(2 13 9 8)(3 16 10 7)(4 15 11 6)
G:=sub<Sym(16)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16), (1,14,12,5)(2,13,9,8)(3,16,10,7)(4,15,11,6)>;
G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16), (1,14,12,5)(2,13,9,8)(3,16,10,7)(4,15,11,6) );
G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16)], [(1,14,12,5),(2,13,9,8),(3,16,10,7),(4,15,11,6)]])
G:=TransitiveGroup(16,8);
C4⋊C4 is a maximal subgroup of
C42⋊C2 C4×D4 C4×Q8 C4⋊D4 C22.D4 C42.C2 C42⋊2C2 C3⋊S3.Q8 C2.PSU3(𝔽2) C4⋊(C32⋊C4) C2.D5≀C2 (C5×C10).Q8
C4p⋊C4: C4.Q8 C2.D8 C4⋊Dic3 C4⋊Dic5 C4⋊F5 C4⋊Dic7 C44⋊C4 C52⋊3C4 ...
C2p.D4: D4⋊C4 Q8⋊C4 C22⋊Q8 C4⋊Q8 Dic3⋊C4 C10.D4 Dic7⋊C4 Dic11⋊C4 ...
C4⋊C4 is a maximal quotient of
C2.C42 C3⋊S3.Q8 C2.PSU3(𝔽2) C4⋊(C32⋊C4) C2.D5≀C2 (C5×C10).Q8
C4p⋊C4: C4.Q8 C2.D8 C4⋊Dic3 C4⋊Dic5 C4⋊F5 C4⋊Dic7 C44⋊C4 C52⋊3C4 ...
C2p.D4: C4⋊C8 C8.C4 Dic3⋊C4 C10.D4 Dic7⋊C4 Dic11⋊C4 C26.D4 C34.D4 ...
Matrix representation of C4⋊C4 ►in GL3(𝔽5) generated by
1 | 0 | 0 |
0 | 0 | 4 |
0 | 1 | 0 |
3 | 0 | 0 |
0 | 3 | 0 |
0 | 0 | 2 |
G:=sub<GL(3,GF(5))| [1,0,0,0,0,1,0,4,0],[3,0,0,0,3,0,0,0,2] >;
C4⋊C4 in GAP, Magma, Sage, TeX
C_4\rtimes C_4
% in TeX
G:=Group("C4:C4");
// GroupNames label
G:=SmallGroup(16,4);
// by ID
G=gap.SmallGroup(16,4);
# by ID
G:=PCGroup([4,-2,2,-2,2,32,49,21]);
// Polycyclic
G:=Group<a,b|a^4=b^4=1,b*a*b^-1=a^-1>;
// generators/relations
Export
Subgroup lattice of C4⋊C4 in TeX
Character table of C4⋊C4 in TeX