Copied to
clipboard

G = D146order 292 = 22·73

Dihedral group

direct product, metacyclic, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: D146, C2×D73, C146⋊C2, C73⋊C22, sometimes denoted D292 or Dih146 or Dih292, SmallGroup(292,4)

Series: Derived Chief Lower central Upper central

C1C73 — D146
C1C73D73 — D146
C73 — D146
C1C2

Generators and relations for D146
 G = < a,b | a146=b2=1, bab=a-1 >

73C2
73C2
73C22

Smallest permutation representation of D146
On 146 points
Generators in S146
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146)
(1 146)(2 145)(3 144)(4 143)(5 142)(6 141)(7 140)(8 139)(9 138)(10 137)(11 136)(12 135)(13 134)(14 133)(15 132)(16 131)(17 130)(18 129)(19 128)(20 127)(21 126)(22 125)(23 124)(24 123)(25 122)(26 121)(27 120)(28 119)(29 118)(30 117)(31 116)(32 115)(33 114)(34 113)(35 112)(36 111)(37 110)(38 109)(39 108)(40 107)(41 106)(42 105)(43 104)(44 103)(45 102)(46 101)(47 100)(48 99)(49 98)(50 97)(51 96)(52 95)(53 94)(54 93)(55 92)(56 91)(57 90)(58 89)(59 88)(60 87)(61 86)(62 85)(63 84)(64 83)(65 82)(66 81)(67 80)(68 79)(69 78)(70 77)(71 76)(72 75)(73 74)

G:=sub<Sym(146)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146), (1,146)(2,145)(3,144)(4,143)(5,142)(6,141)(7,140)(8,139)(9,138)(10,137)(11,136)(12,135)(13,134)(14,133)(15,132)(16,131)(17,130)(18,129)(19,128)(20,127)(21,126)(22,125)(23,124)(24,123)(25,122)(26,121)(27,120)(28,119)(29,118)(30,117)(31,116)(32,115)(33,114)(34,113)(35,112)(36,111)(37,110)(38,109)(39,108)(40,107)(41,106)(42,105)(43,104)(44,103)(45,102)(46,101)(47,100)(48,99)(49,98)(50,97)(51,96)(52,95)(53,94)(54,93)(55,92)(56,91)(57,90)(58,89)(59,88)(60,87)(61,86)(62,85)(63,84)(64,83)(65,82)(66,81)(67,80)(68,79)(69,78)(70,77)(71,76)(72,75)(73,74)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146), (1,146)(2,145)(3,144)(4,143)(5,142)(6,141)(7,140)(8,139)(9,138)(10,137)(11,136)(12,135)(13,134)(14,133)(15,132)(16,131)(17,130)(18,129)(19,128)(20,127)(21,126)(22,125)(23,124)(24,123)(25,122)(26,121)(27,120)(28,119)(29,118)(30,117)(31,116)(32,115)(33,114)(34,113)(35,112)(36,111)(37,110)(38,109)(39,108)(40,107)(41,106)(42,105)(43,104)(44,103)(45,102)(46,101)(47,100)(48,99)(49,98)(50,97)(51,96)(52,95)(53,94)(54,93)(55,92)(56,91)(57,90)(58,89)(59,88)(60,87)(61,86)(62,85)(63,84)(64,83)(65,82)(66,81)(67,80)(68,79)(69,78)(70,77)(71,76)(72,75)(73,74) );

G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146)], [(1,146),(2,145),(3,144),(4,143),(5,142),(6,141),(7,140),(8,139),(9,138),(10,137),(11,136),(12,135),(13,134),(14,133),(15,132),(16,131),(17,130),(18,129),(19,128),(20,127),(21,126),(22,125),(23,124),(24,123),(25,122),(26,121),(27,120),(28,119),(29,118),(30,117),(31,116),(32,115),(33,114),(34,113),(35,112),(36,111),(37,110),(38,109),(39,108),(40,107),(41,106),(42,105),(43,104),(44,103),(45,102),(46,101),(47,100),(48,99),(49,98),(50,97),(51,96),(52,95),(53,94),(54,93),(55,92),(56,91),(57,90),(58,89),(59,88),(60,87),(61,86),(62,85),(63,84),(64,83),(65,82),(66,81),(67,80),(68,79),(69,78),(70,77),(71,76),(72,75),(73,74)])

76 conjugacy classes

class 1 2A2B2C73A···73AJ146A···146AJ
order122273···73146···146
size1173732···22···2

76 irreducible representations

dim11122
type+++++
imageC1C2C2D73D146
kernelD146D73C146C2C1
# reps1213636

Matrix representation of D146 in GL3(𝔽293) generated by

29200
0138200
018892
,
100
0207129
0486
G:=sub<GL(3,GF(293))| [292,0,0,0,138,188,0,200,92],[1,0,0,0,207,4,0,129,86] >;

D146 in GAP, Magma, Sage, TeX

D_{146}
% in TeX

G:=Group("D146");
// GroupNames label

G:=SmallGroup(292,4);
// by ID

G=gap.SmallGroup(292,4);
# by ID

G:=PCGroup([3,-2,-2,-73,2594]);
// Polycyclic

G:=Group<a,b|a^146=b^2=1,b*a*b=a^-1>;
// generators/relations

Export

Subgroup lattice of D146 in TeX

׿
×
𝔽