Copied to
clipboard

G = D158order 316 = 22·79

Dihedral group

direct product, metacyclic, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: D158, C2×D79, C158⋊C2, C79⋊C22, sometimes denoted D316 or Dih158 or Dih316, SmallGroup(316,3)

Series: Derived Chief Lower central Upper central

C1C79 — D158
C1C79D79 — D158
C79 — D158
C1C2

Generators and relations for D158
 G = < a,b | a158=b2=1, bab=a-1 >

79C2
79C2
79C22

Smallest permutation representation of D158
On 158 points
Generators in S158
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158)
(1 158)(2 157)(3 156)(4 155)(5 154)(6 153)(7 152)(8 151)(9 150)(10 149)(11 148)(12 147)(13 146)(14 145)(15 144)(16 143)(17 142)(18 141)(19 140)(20 139)(21 138)(22 137)(23 136)(24 135)(25 134)(26 133)(27 132)(28 131)(29 130)(30 129)(31 128)(32 127)(33 126)(34 125)(35 124)(36 123)(37 122)(38 121)(39 120)(40 119)(41 118)(42 117)(43 116)(44 115)(45 114)(46 113)(47 112)(48 111)(49 110)(50 109)(51 108)(52 107)(53 106)(54 105)(55 104)(56 103)(57 102)(58 101)(59 100)(60 99)(61 98)(62 97)(63 96)(64 95)(65 94)(66 93)(67 92)(68 91)(69 90)(70 89)(71 88)(72 87)(73 86)(74 85)(75 84)(76 83)(77 82)(78 81)(79 80)

G:=sub<Sym(158)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158), (1,158)(2,157)(3,156)(4,155)(5,154)(6,153)(7,152)(8,151)(9,150)(10,149)(11,148)(12,147)(13,146)(14,145)(15,144)(16,143)(17,142)(18,141)(19,140)(20,139)(21,138)(22,137)(23,136)(24,135)(25,134)(26,133)(27,132)(28,131)(29,130)(30,129)(31,128)(32,127)(33,126)(34,125)(35,124)(36,123)(37,122)(38,121)(39,120)(40,119)(41,118)(42,117)(43,116)(44,115)(45,114)(46,113)(47,112)(48,111)(49,110)(50,109)(51,108)(52,107)(53,106)(54,105)(55,104)(56,103)(57,102)(58,101)(59,100)(60,99)(61,98)(62,97)(63,96)(64,95)(65,94)(66,93)(67,92)(68,91)(69,90)(70,89)(71,88)(72,87)(73,86)(74,85)(75,84)(76,83)(77,82)(78,81)(79,80)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158), (1,158)(2,157)(3,156)(4,155)(5,154)(6,153)(7,152)(8,151)(9,150)(10,149)(11,148)(12,147)(13,146)(14,145)(15,144)(16,143)(17,142)(18,141)(19,140)(20,139)(21,138)(22,137)(23,136)(24,135)(25,134)(26,133)(27,132)(28,131)(29,130)(30,129)(31,128)(32,127)(33,126)(34,125)(35,124)(36,123)(37,122)(38,121)(39,120)(40,119)(41,118)(42,117)(43,116)(44,115)(45,114)(46,113)(47,112)(48,111)(49,110)(50,109)(51,108)(52,107)(53,106)(54,105)(55,104)(56,103)(57,102)(58,101)(59,100)(60,99)(61,98)(62,97)(63,96)(64,95)(65,94)(66,93)(67,92)(68,91)(69,90)(70,89)(71,88)(72,87)(73,86)(74,85)(75,84)(76,83)(77,82)(78,81)(79,80) );

G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158)], [(1,158),(2,157),(3,156),(4,155),(5,154),(6,153),(7,152),(8,151),(9,150),(10,149),(11,148),(12,147),(13,146),(14,145),(15,144),(16,143),(17,142),(18,141),(19,140),(20,139),(21,138),(22,137),(23,136),(24,135),(25,134),(26,133),(27,132),(28,131),(29,130),(30,129),(31,128),(32,127),(33,126),(34,125),(35,124),(36,123),(37,122),(38,121),(39,120),(40,119),(41,118),(42,117),(43,116),(44,115),(45,114),(46,113),(47,112),(48,111),(49,110),(50,109),(51,108),(52,107),(53,106),(54,105),(55,104),(56,103),(57,102),(58,101),(59,100),(60,99),(61,98),(62,97),(63,96),(64,95),(65,94),(66,93),(67,92),(68,91),(69,90),(70,89),(71,88),(72,87),(73,86),(74,85),(75,84),(76,83),(77,82),(78,81),(79,80)])

82 conjugacy classes

class 1 2A2B2C79A···79AM158A···158AM
order122279···79158···158
size1179792···22···2

82 irreducible representations

dim11122
type+++++
imageC1C2C2D79D158
kernelD158D79C158C2C1
# reps1213939

Matrix representation of D158 in GL3(𝔽317) generated by

31600
0213202
0269206
,
100
073259
070244
G:=sub<GL(3,GF(317))| [316,0,0,0,213,269,0,202,206],[1,0,0,0,73,70,0,259,244] >;

D158 in GAP, Magma, Sage, TeX

D_{158}
% in TeX

G:=Group("D158");
// GroupNames label

G:=SmallGroup(316,3);
// by ID

G=gap.SmallGroup(316,3);
# by ID

G:=PCGroup([3,-2,-2,-79,2810]);
// Polycyclic

G:=Group<a,b|a^158=b^2=1,b*a*b=a^-1>;
// generators/relations

Export

Subgroup lattice of D158 in TeX

׿
×
𝔽