Extensions 1→N→G→Q→1 with N=C6×D13 and Q=C2

Direct product G=N×Q with N=C6×D13 and Q=C2

Semidirect products G=N:Q with N=C6×D13 and Q=C2
extensionφ:Q→Out NdρLabelID
(C6×D13)⋊1C2 = C39⋊D4φ: C2/C1C2 ⊆ Out C6×D131564-(C6xD13):1C2312,18
(C6×D13)⋊2C2 = C3⋊D52φ: C2/C1C2 ⊆ Out C6×D131564+(C6xD13):2C2312,19
(C6×D13)⋊3C2 = C2×S3×D13φ: C2/C1C2 ⊆ Out C6×D13784+(C6xD13):3C2312,54
(C6×D13)⋊4C2 = C3×D52φ: C2/C1C2 ⊆ Out C6×D131562(C6xD13):4C2312,29
(C6×D13)⋊5C2 = C3×C13⋊D4φ: C2/C1C2 ⊆ Out C6×D131562(C6xD13):5C2312,31

Non-split extensions G=N.Q with N=C6×D13 and Q=C2
extensionφ:Q→Out NdρLabelID
(C6×D13).1C2 = Dic3×D13φ: C2/C1C2 ⊆ Out C6×D131564-(C6xD13).1C2312,15
(C6×D13).2C2 = C2×C39⋊C4φ: C2/C1C2 ⊆ Out C6×D13784(C6xD13).2C2312,53
(C6×D13).3C2 = C6×C13⋊C4φ: C2/C1C2 ⊆ Out C6×D13784(C6xD13).3C2312,52
(C6×D13).4C2 = C12×D13φ: trivial image1562(C6xD13).4C2312,28