Extensions 1→N→G→Q→1 with N=C19⋊C8 and Q=C2

Direct product G=N×Q with N=C19⋊C8 and Q=C2
dρLabelID
C2×C19⋊C8304C2xC19:C8304,8

Semidirect products G=N:Q with N=C19⋊C8 and Q=C2
extensionφ:Q→Out NdρLabelID
C19⋊C81C2 = D4⋊D19φ: C2/C1C2 ⊆ Out C19⋊C81524+C19:C8:1C2304,14
C19⋊C82C2 = D4.D19φ: C2/C1C2 ⊆ Out C19⋊C81524-C19:C8:2C2304,15
C19⋊C83C2 = Q8⋊D19φ: C2/C1C2 ⊆ Out C19⋊C81524+C19:C8:3C2304,16
C19⋊C84C2 = C8⋊D19φ: C2/C1C2 ⊆ Out C19⋊C81522C19:C8:4C2304,4
C19⋊C85C2 = C76.C4φ: C2/C1C2 ⊆ Out C19⋊C81522C19:C8:5C2304,9
C19⋊C86C2 = C8×D19φ: trivial image1522C19:C8:6C2304,3

Non-split extensions G=N.Q with N=C19⋊C8 and Q=C2
extensionφ:Q→Out NdρLabelID
C19⋊C8.C2 = C19⋊Q16φ: C2/C1C2 ⊆ Out C19⋊C83044-C19:C8.C2304,17

׿
×
𝔽