Copied to
clipboard

G = D4⋊D19order 304 = 24·19

The semidirect product of D4 and D19 acting via D19/C19=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D4⋊D19, C192D8, D762C2, C4.1D38, C38.7D4, C76.1C22, C19⋊C81C2, (D4×C19)⋊1C2, C2.4(C19⋊D4), SmallGroup(304,14)

Series: Derived Chief Lower central Upper central

C1C76 — D4⋊D19
C1C19C38C76D76 — D4⋊D19
C19C38C76 — D4⋊D19
C1C2C4D4

Generators and relations for D4⋊D19
 G = < a,b,c,d | a4=b2=c19=d2=1, bab=dad=a-1, ac=ca, bc=cb, dbd=ab, dcd=c-1 >

4C2
76C2
2C22
38C22
4D19
4C38
19C8
19D4
2D38
2C2×C38
19D8

Smallest permutation representation of D4⋊D19
On 152 points
Generators in S152
(1 64 32 44)(2 65 33 45)(3 66 34 46)(4 67 35 47)(5 68 36 48)(6 69 37 49)(7 70 38 50)(8 71 20 51)(9 72 21 52)(10 73 22 53)(11 74 23 54)(12 75 24 55)(13 76 25 56)(14 58 26 57)(15 59 27 39)(16 60 28 40)(17 61 29 41)(18 62 30 42)(19 63 31 43)(77 128 106 140)(78 129 107 141)(79 130 108 142)(80 131 109 143)(81 132 110 144)(82 133 111 145)(83 115 112 146)(84 116 113 147)(85 117 114 148)(86 118 96 149)(87 119 97 150)(88 120 98 151)(89 121 99 152)(90 122 100 134)(91 123 101 135)(92 124 102 136)(93 125 103 137)(94 126 104 138)(95 127 105 139)
(1 139)(2 140)(3 141)(4 142)(5 143)(6 144)(7 145)(8 146)(9 147)(10 148)(11 149)(12 150)(13 151)(14 152)(15 134)(16 135)(17 136)(18 137)(19 138)(20 115)(21 116)(22 117)(23 118)(24 119)(25 120)(26 121)(27 122)(28 123)(29 124)(30 125)(31 126)(32 127)(33 128)(34 129)(35 130)(36 131)(37 132)(38 133)(39 90)(40 91)(41 92)(42 93)(43 94)(44 95)(45 77)(46 78)(47 79)(48 80)(49 81)(50 82)(51 83)(52 84)(53 85)(54 86)(55 87)(56 88)(57 89)(58 99)(59 100)(60 101)(61 102)(62 103)(63 104)(64 105)(65 106)(66 107)(67 108)(68 109)(69 110)(70 111)(71 112)(72 113)(73 114)(74 96)(75 97)(76 98)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19)(20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38)(39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57)(58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76)(77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95)(96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114)(115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133)(134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152)
(1 19)(2 18)(3 17)(4 16)(5 15)(6 14)(7 13)(8 12)(9 11)(20 24)(21 23)(25 38)(26 37)(27 36)(28 35)(29 34)(30 33)(31 32)(39 68)(40 67)(41 66)(42 65)(43 64)(44 63)(45 62)(46 61)(47 60)(48 59)(49 58)(50 76)(51 75)(52 74)(53 73)(54 72)(55 71)(56 70)(57 69)(77 125)(78 124)(79 123)(80 122)(81 121)(82 120)(83 119)(84 118)(85 117)(86 116)(87 115)(88 133)(89 132)(90 131)(91 130)(92 129)(93 128)(94 127)(95 126)(96 147)(97 146)(98 145)(99 144)(100 143)(101 142)(102 141)(103 140)(104 139)(105 138)(106 137)(107 136)(108 135)(109 134)(110 152)(111 151)(112 150)(113 149)(114 148)

G:=sub<Sym(152)| (1,64,32,44)(2,65,33,45)(3,66,34,46)(4,67,35,47)(5,68,36,48)(6,69,37,49)(7,70,38,50)(8,71,20,51)(9,72,21,52)(10,73,22,53)(11,74,23,54)(12,75,24,55)(13,76,25,56)(14,58,26,57)(15,59,27,39)(16,60,28,40)(17,61,29,41)(18,62,30,42)(19,63,31,43)(77,128,106,140)(78,129,107,141)(79,130,108,142)(80,131,109,143)(81,132,110,144)(82,133,111,145)(83,115,112,146)(84,116,113,147)(85,117,114,148)(86,118,96,149)(87,119,97,150)(88,120,98,151)(89,121,99,152)(90,122,100,134)(91,123,101,135)(92,124,102,136)(93,125,103,137)(94,126,104,138)(95,127,105,139), (1,139)(2,140)(3,141)(4,142)(5,143)(6,144)(7,145)(8,146)(9,147)(10,148)(11,149)(12,150)(13,151)(14,152)(15,134)(16,135)(17,136)(18,137)(19,138)(20,115)(21,116)(22,117)(23,118)(24,119)(25,120)(26,121)(27,122)(28,123)(29,124)(30,125)(31,126)(32,127)(33,128)(34,129)(35,130)(36,131)(37,132)(38,133)(39,90)(40,91)(41,92)(42,93)(43,94)(44,95)(45,77)(46,78)(47,79)(48,80)(49,81)(50,82)(51,83)(52,84)(53,85)(54,86)(55,87)(56,88)(57,89)(58,99)(59,100)(60,101)(61,102)(62,103)(63,104)(64,105)(65,106)(66,107)(67,108)(68,109)(69,110)(70,111)(71,112)(72,113)(73,114)(74,96)(75,97)(76,98), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19)(20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38)(39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57)(58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76)(77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95)(96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114)(115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133)(134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152), (1,19)(2,18)(3,17)(4,16)(5,15)(6,14)(7,13)(8,12)(9,11)(20,24)(21,23)(25,38)(26,37)(27,36)(28,35)(29,34)(30,33)(31,32)(39,68)(40,67)(41,66)(42,65)(43,64)(44,63)(45,62)(46,61)(47,60)(48,59)(49,58)(50,76)(51,75)(52,74)(53,73)(54,72)(55,71)(56,70)(57,69)(77,125)(78,124)(79,123)(80,122)(81,121)(82,120)(83,119)(84,118)(85,117)(86,116)(87,115)(88,133)(89,132)(90,131)(91,130)(92,129)(93,128)(94,127)(95,126)(96,147)(97,146)(98,145)(99,144)(100,143)(101,142)(102,141)(103,140)(104,139)(105,138)(106,137)(107,136)(108,135)(109,134)(110,152)(111,151)(112,150)(113,149)(114,148)>;

G:=Group( (1,64,32,44)(2,65,33,45)(3,66,34,46)(4,67,35,47)(5,68,36,48)(6,69,37,49)(7,70,38,50)(8,71,20,51)(9,72,21,52)(10,73,22,53)(11,74,23,54)(12,75,24,55)(13,76,25,56)(14,58,26,57)(15,59,27,39)(16,60,28,40)(17,61,29,41)(18,62,30,42)(19,63,31,43)(77,128,106,140)(78,129,107,141)(79,130,108,142)(80,131,109,143)(81,132,110,144)(82,133,111,145)(83,115,112,146)(84,116,113,147)(85,117,114,148)(86,118,96,149)(87,119,97,150)(88,120,98,151)(89,121,99,152)(90,122,100,134)(91,123,101,135)(92,124,102,136)(93,125,103,137)(94,126,104,138)(95,127,105,139), (1,139)(2,140)(3,141)(4,142)(5,143)(6,144)(7,145)(8,146)(9,147)(10,148)(11,149)(12,150)(13,151)(14,152)(15,134)(16,135)(17,136)(18,137)(19,138)(20,115)(21,116)(22,117)(23,118)(24,119)(25,120)(26,121)(27,122)(28,123)(29,124)(30,125)(31,126)(32,127)(33,128)(34,129)(35,130)(36,131)(37,132)(38,133)(39,90)(40,91)(41,92)(42,93)(43,94)(44,95)(45,77)(46,78)(47,79)(48,80)(49,81)(50,82)(51,83)(52,84)(53,85)(54,86)(55,87)(56,88)(57,89)(58,99)(59,100)(60,101)(61,102)(62,103)(63,104)(64,105)(65,106)(66,107)(67,108)(68,109)(69,110)(70,111)(71,112)(72,113)(73,114)(74,96)(75,97)(76,98), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19)(20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38)(39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57)(58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76)(77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95)(96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114)(115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133)(134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152), (1,19)(2,18)(3,17)(4,16)(5,15)(6,14)(7,13)(8,12)(9,11)(20,24)(21,23)(25,38)(26,37)(27,36)(28,35)(29,34)(30,33)(31,32)(39,68)(40,67)(41,66)(42,65)(43,64)(44,63)(45,62)(46,61)(47,60)(48,59)(49,58)(50,76)(51,75)(52,74)(53,73)(54,72)(55,71)(56,70)(57,69)(77,125)(78,124)(79,123)(80,122)(81,121)(82,120)(83,119)(84,118)(85,117)(86,116)(87,115)(88,133)(89,132)(90,131)(91,130)(92,129)(93,128)(94,127)(95,126)(96,147)(97,146)(98,145)(99,144)(100,143)(101,142)(102,141)(103,140)(104,139)(105,138)(106,137)(107,136)(108,135)(109,134)(110,152)(111,151)(112,150)(113,149)(114,148) );

G=PermutationGroup([[(1,64,32,44),(2,65,33,45),(3,66,34,46),(4,67,35,47),(5,68,36,48),(6,69,37,49),(7,70,38,50),(8,71,20,51),(9,72,21,52),(10,73,22,53),(11,74,23,54),(12,75,24,55),(13,76,25,56),(14,58,26,57),(15,59,27,39),(16,60,28,40),(17,61,29,41),(18,62,30,42),(19,63,31,43),(77,128,106,140),(78,129,107,141),(79,130,108,142),(80,131,109,143),(81,132,110,144),(82,133,111,145),(83,115,112,146),(84,116,113,147),(85,117,114,148),(86,118,96,149),(87,119,97,150),(88,120,98,151),(89,121,99,152),(90,122,100,134),(91,123,101,135),(92,124,102,136),(93,125,103,137),(94,126,104,138),(95,127,105,139)], [(1,139),(2,140),(3,141),(4,142),(5,143),(6,144),(7,145),(8,146),(9,147),(10,148),(11,149),(12,150),(13,151),(14,152),(15,134),(16,135),(17,136),(18,137),(19,138),(20,115),(21,116),(22,117),(23,118),(24,119),(25,120),(26,121),(27,122),(28,123),(29,124),(30,125),(31,126),(32,127),(33,128),(34,129),(35,130),(36,131),(37,132),(38,133),(39,90),(40,91),(41,92),(42,93),(43,94),(44,95),(45,77),(46,78),(47,79),(48,80),(49,81),(50,82),(51,83),(52,84),(53,85),(54,86),(55,87),(56,88),(57,89),(58,99),(59,100),(60,101),(61,102),(62,103),(63,104),(64,105),(65,106),(66,107),(67,108),(68,109),(69,110),(70,111),(71,112),(72,113),(73,114),(74,96),(75,97),(76,98)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19),(20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38),(39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57),(58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76),(77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95),(96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114),(115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133),(134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152)], [(1,19),(2,18),(3,17),(4,16),(5,15),(6,14),(7,13),(8,12),(9,11),(20,24),(21,23),(25,38),(26,37),(27,36),(28,35),(29,34),(30,33),(31,32),(39,68),(40,67),(41,66),(42,65),(43,64),(44,63),(45,62),(46,61),(47,60),(48,59),(49,58),(50,76),(51,75),(52,74),(53,73),(54,72),(55,71),(56,70),(57,69),(77,125),(78,124),(79,123),(80,122),(81,121),(82,120),(83,119),(84,118),(85,117),(86,116),(87,115),(88,133),(89,132),(90,131),(91,130),(92,129),(93,128),(94,127),(95,126),(96,147),(97,146),(98,145),(99,144),(100,143),(101,142),(102,141),(103,140),(104,139),(105,138),(106,137),(107,136),(108,135),(109,134),(110,152),(111,151),(112,150),(113,149),(114,148)]])

52 conjugacy classes

class 1 2A2B2C 4 8A8B19A···19I38A···38I38J···38AA76A···76I
order122248819···1938···3838···3876···76
size11476238382···22···24···44···4

52 irreducible representations

dim1111222224
type+++++++++
imageC1C2C2C2D4D8D19D38C19⋊D4D4⋊D19
kernelD4⋊D19C19⋊C8D76D4×C19C38C19D4C4C2C1
# reps11111299189

Matrix representation of D4⋊D19 in GL4(𝔽457) generated by

1000
0100
001150
00262456
,
456000
045600
00059
00310
,
340100
1746100
0010
0001
,
45544100
143200
0010
00262456
G:=sub<GL(4,GF(457))| [1,0,0,0,0,1,0,0,0,0,1,262,0,0,150,456],[456,0,0,0,0,456,0,0,0,0,0,31,0,0,59,0],[340,174,0,0,1,61,0,0,0,0,1,0,0,0,0,1],[455,143,0,0,441,2,0,0,0,0,1,262,0,0,0,456] >;

D4⋊D19 in GAP, Magma, Sage, TeX

D_4\rtimes D_{19}
% in TeX

G:=Group("D4:D19");
// GroupNames label

G:=SmallGroup(304,14);
// by ID

G=gap.SmallGroup(304,14);
# by ID

G:=PCGroup([5,-2,-2,-2,-2,-19,61,182,97,42,7204]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^2=c^19=d^2=1,b*a*b=d*a*d=a^-1,a*c=c*a,b*c=c*b,d*b*d=a*b,d*c*d=c^-1>;
// generators/relations

Export

Subgroup lattice of D4⋊D19 in TeX

׿
×
𝔽