extension | φ:Q→Aut N | d | ρ | Label | ID |
C38.1(C2×C4) = C8×D19 | φ: C2×C4/C4 → C2 ⊆ Aut C38 | 152 | 2 | C38.1(C2xC4) | 304,3 |
C38.2(C2×C4) = C8⋊D19 | φ: C2×C4/C4 → C2 ⊆ Aut C38 | 152 | 2 | C38.2(C2xC4) | 304,4 |
C38.3(C2×C4) = C4×Dic19 | φ: C2×C4/C4 → C2 ⊆ Aut C38 | 304 | | C38.3(C2xC4) | 304,10 |
C38.4(C2×C4) = Dic19⋊C4 | φ: C2×C4/C4 → C2 ⊆ Aut C38 | 304 | | C38.4(C2xC4) | 304,11 |
C38.5(C2×C4) = D38⋊C4 | φ: C2×C4/C4 → C2 ⊆ Aut C38 | 152 | | C38.5(C2xC4) | 304,13 |
C38.6(C2×C4) = C2×C19⋊C8 | φ: C2×C4/C22 → C2 ⊆ Aut C38 | 304 | | C38.6(C2xC4) | 304,8 |
C38.7(C2×C4) = C76.C4 | φ: C2×C4/C22 → C2 ⊆ Aut C38 | 152 | 2 | C38.7(C2xC4) | 304,9 |
C38.8(C2×C4) = C76⋊C4 | φ: C2×C4/C22 → C2 ⊆ Aut C38 | 304 | | C38.8(C2xC4) | 304,12 |
C38.9(C2×C4) = C23.D19 | φ: C2×C4/C22 → C2 ⊆ Aut C38 | 152 | | C38.9(C2xC4) | 304,18 |
C38.10(C2×C4) = C22⋊C4×C19 | central extension (φ=1) | 152 | | C38.10(C2xC4) | 304,20 |
C38.11(C2×C4) = C4⋊C4×C19 | central extension (φ=1) | 304 | | C38.11(C2xC4) | 304,21 |
C38.12(C2×C4) = M4(2)×C19 | central extension (φ=1) | 152 | 2 | C38.12(C2xC4) | 304,23 |