Extensions 1→N→G→Q→1 with N=C2 and Q=C4.Dic10

Direct product G=N×Q with N=C2 and Q=C4.Dic10
dρLabelID
C2×C4.Dic10320C2xC4.Dic10320,1171


Non-split extensions G=N.Q with N=C2 and Q=C4.Dic10
extensionφ:Q→Aut NdρLabelID
C2.1(C4.Dic10) = C4⋊Dic515C4central extension (φ=1)320C2.1(C4.Dic10)320,281
C2.2(C4.Dic10) = C10.52(C4×D4)central extension (φ=1)320C2.2(C4.Dic10)320,282
C2.3(C4.Dic10) = C204(C4⋊C4)central extension (φ=1)320C2.3(C4.Dic10)320,600
C2.4(C4.Dic10) = C20.48(C4⋊C4)central extension (φ=1)320C2.4(C4.Dic10)320,604
C2.5(C4.Dic10) = C206(C4⋊C4)central extension (φ=1)320C2.5(C4.Dic10)320,612
C2.6(C4.Dic10) = (C2×C4).Dic10central stem extension (φ=1)320C2.6(C4.Dic10)320,287
C2.7(C4.Dic10) = C10.(C4⋊Q8)central stem extension (φ=1)320C2.7(C4.Dic10)320,288
C2.8(C4.Dic10) = (C2×C20).54D4central stem extension (φ=1)320C2.8(C4.Dic10)320,611
C2.9(C4.Dic10) = (C2×C20).55D4central stem extension (φ=1)320C2.9(C4.Dic10)320,613

׿
×
𝔽