Copied to
clipboard

G = C4.Dic10order 160 = 25·5

3rd non-split extension by C4 of Dic10 acting via Dic10/Dic5=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C20.3Q8, C4.3Dic10, C4⋊C4.6D5, C10.6(C2×Q8), (C2×C4).43D10, C4⋊Dic5.7C2, C53(C42.C2), (C4×Dic5).2C2, C2.8(C2×Dic10), C10.25(C4○D4), (C2×C20).22C22, (C2×C10).31C23, C2.4(Q82D5), C10.D4.3C2, C2.12(D42D5), C22.48(C22×D5), (C2×Dic5).10C22, (C5×C4⋊C4).7C2, SmallGroup(160,111)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C4.Dic10
C1C5C10C2×C10C2×Dic5C4×Dic5 — C4.Dic10
C5C2×C10 — C4.Dic10
C1C22C4⋊C4

Generators and relations for C4.Dic10
 G = < a,b,c | a4=b20=1, c2=b10, bab-1=a-1, ac=ca, cbc-1=a2b-1 >

Subgroups: 144 in 56 conjugacy classes, 33 normal (19 characteristic)
C1, C2, C4, C4, C22, C5, C2×C4, C2×C4, C2×C4, C10, C42, C4⋊C4, C4⋊C4, Dic5, C20, C20, C2×C10, C42.C2, C2×Dic5, C2×Dic5, C2×C20, C2×C20, C4×Dic5, C10.D4, C4⋊Dic5, C4⋊Dic5, C5×C4⋊C4, C4.Dic10
Quotients: C1, C2, C22, Q8, C23, D5, C2×Q8, C4○D4, D10, C42.C2, Dic10, C22×D5, C2×Dic10, D42D5, Q82D5, C4.Dic10

Smallest permutation representation of C4.Dic10
Regular action on 160 points
Generators in S160
(1 37 80 129)(2 130 61 38)(3 39 62 131)(4 132 63 40)(5 21 64 133)(6 134 65 22)(7 23 66 135)(8 136 67 24)(9 25 68 137)(10 138 69 26)(11 27 70 139)(12 140 71 28)(13 29 72 121)(14 122 73 30)(15 31 74 123)(16 124 75 32)(17 33 76 125)(18 126 77 34)(19 35 78 127)(20 128 79 36)(41 95 145 115)(42 116 146 96)(43 97 147 117)(44 118 148 98)(45 99 149 119)(46 120 150 100)(47 81 151 101)(48 102 152 82)(49 83 153 103)(50 104 154 84)(51 85 155 105)(52 106 156 86)(53 87 157 107)(54 108 158 88)(55 89 159 109)(56 110 160 90)(57 91 141 111)(58 112 142 92)(59 93 143 113)(60 114 144 94)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 147 11 157)(2 42 12 52)(3 145 13 155)(4 60 14 50)(5 143 15 153)(6 58 16 48)(7 141 17 151)(8 56 18 46)(9 159 19 149)(10 54 20 44)(21 113 31 103)(22 92 32 82)(23 111 33 101)(24 90 34 100)(25 109 35 119)(26 88 36 98)(27 107 37 117)(28 86 38 96)(29 105 39 115)(30 84 40 94)(41 72 51 62)(43 70 53 80)(45 68 55 78)(47 66 57 76)(49 64 59 74)(61 146 71 156)(63 144 73 154)(65 142 75 152)(67 160 77 150)(69 158 79 148)(81 135 91 125)(83 133 93 123)(85 131 95 121)(87 129 97 139)(89 127 99 137)(102 134 112 124)(104 132 114 122)(106 130 116 140)(108 128 118 138)(110 126 120 136)

G:=sub<Sym(160)| (1,37,80,129)(2,130,61,38)(3,39,62,131)(4,132,63,40)(5,21,64,133)(6,134,65,22)(7,23,66,135)(8,136,67,24)(9,25,68,137)(10,138,69,26)(11,27,70,139)(12,140,71,28)(13,29,72,121)(14,122,73,30)(15,31,74,123)(16,124,75,32)(17,33,76,125)(18,126,77,34)(19,35,78,127)(20,128,79,36)(41,95,145,115)(42,116,146,96)(43,97,147,117)(44,118,148,98)(45,99,149,119)(46,120,150,100)(47,81,151,101)(48,102,152,82)(49,83,153,103)(50,104,154,84)(51,85,155,105)(52,106,156,86)(53,87,157,107)(54,108,158,88)(55,89,159,109)(56,110,160,90)(57,91,141,111)(58,112,142,92)(59,93,143,113)(60,114,144,94), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,147,11,157)(2,42,12,52)(3,145,13,155)(4,60,14,50)(5,143,15,153)(6,58,16,48)(7,141,17,151)(8,56,18,46)(9,159,19,149)(10,54,20,44)(21,113,31,103)(22,92,32,82)(23,111,33,101)(24,90,34,100)(25,109,35,119)(26,88,36,98)(27,107,37,117)(28,86,38,96)(29,105,39,115)(30,84,40,94)(41,72,51,62)(43,70,53,80)(45,68,55,78)(47,66,57,76)(49,64,59,74)(61,146,71,156)(63,144,73,154)(65,142,75,152)(67,160,77,150)(69,158,79,148)(81,135,91,125)(83,133,93,123)(85,131,95,121)(87,129,97,139)(89,127,99,137)(102,134,112,124)(104,132,114,122)(106,130,116,140)(108,128,118,138)(110,126,120,136)>;

G:=Group( (1,37,80,129)(2,130,61,38)(3,39,62,131)(4,132,63,40)(5,21,64,133)(6,134,65,22)(7,23,66,135)(8,136,67,24)(9,25,68,137)(10,138,69,26)(11,27,70,139)(12,140,71,28)(13,29,72,121)(14,122,73,30)(15,31,74,123)(16,124,75,32)(17,33,76,125)(18,126,77,34)(19,35,78,127)(20,128,79,36)(41,95,145,115)(42,116,146,96)(43,97,147,117)(44,118,148,98)(45,99,149,119)(46,120,150,100)(47,81,151,101)(48,102,152,82)(49,83,153,103)(50,104,154,84)(51,85,155,105)(52,106,156,86)(53,87,157,107)(54,108,158,88)(55,89,159,109)(56,110,160,90)(57,91,141,111)(58,112,142,92)(59,93,143,113)(60,114,144,94), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,147,11,157)(2,42,12,52)(3,145,13,155)(4,60,14,50)(5,143,15,153)(6,58,16,48)(7,141,17,151)(8,56,18,46)(9,159,19,149)(10,54,20,44)(21,113,31,103)(22,92,32,82)(23,111,33,101)(24,90,34,100)(25,109,35,119)(26,88,36,98)(27,107,37,117)(28,86,38,96)(29,105,39,115)(30,84,40,94)(41,72,51,62)(43,70,53,80)(45,68,55,78)(47,66,57,76)(49,64,59,74)(61,146,71,156)(63,144,73,154)(65,142,75,152)(67,160,77,150)(69,158,79,148)(81,135,91,125)(83,133,93,123)(85,131,95,121)(87,129,97,139)(89,127,99,137)(102,134,112,124)(104,132,114,122)(106,130,116,140)(108,128,118,138)(110,126,120,136) );

G=PermutationGroup([[(1,37,80,129),(2,130,61,38),(3,39,62,131),(4,132,63,40),(5,21,64,133),(6,134,65,22),(7,23,66,135),(8,136,67,24),(9,25,68,137),(10,138,69,26),(11,27,70,139),(12,140,71,28),(13,29,72,121),(14,122,73,30),(15,31,74,123),(16,124,75,32),(17,33,76,125),(18,126,77,34),(19,35,78,127),(20,128,79,36),(41,95,145,115),(42,116,146,96),(43,97,147,117),(44,118,148,98),(45,99,149,119),(46,120,150,100),(47,81,151,101),(48,102,152,82),(49,83,153,103),(50,104,154,84),(51,85,155,105),(52,106,156,86),(53,87,157,107),(54,108,158,88),(55,89,159,109),(56,110,160,90),(57,91,141,111),(58,112,142,92),(59,93,143,113),(60,114,144,94)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,147,11,157),(2,42,12,52),(3,145,13,155),(4,60,14,50),(5,143,15,153),(6,58,16,48),(7,141,17,151),(8,56,18,46),(9,159,19,149),(10,54,20,44),(21,113,31,103),(22,92,32,82),(23,111,33,101),(24,90,34,100),(25,109,35,119),(26,88,36,98),(27,107,37,117),(28,86,38,96),(29,105,39,115),(30,84,40,94),(41,72,51,62),(43,70,53,80),(45,68,55,78),(47,66,57,76),(49,64,59,74),(61,146,71,156),(63,144,73,154),(65,142,75,152),(67,160,77,150),(69,158,79,148),(81,135,91,125),(83,133,93,123),(85,131,95,121),(87,129,97,139),(89,127,99,137),(102,134,112,124),(104,132,114,122),(106,130,116,140),(108,128,118,138),(110,126,120,136)]])

C4.Dic10 is a maximal subgroup of
C10.C4≀C2  D4.Dic10  C4⋊C4.D10  D4.2Dic10  (C8×Dic5)⋊C2  Q8.Dic10  C408C4.C2  Q8.2Dic10  Q8⋊Dic5⋊C2  C403Q8  Dic10.Q8  C8.8Dic10  D20.Q8  C404Q8  Dic10.2Q8  C8.6Dic10  D20.2Q8  C10.12- 1+4  C10.52- 1+4  C10.112+ 1+4  C42.88D10  C42.90D10  C42.94D10  C42.95D10  D45Dic10  D46Dic10  C42.229D10  C42.116D10  Q85Dic10  Q86Dic10  C42.131D10  C42.134D10  C4⋊C4.178D10  C10.432+ 1+4  C10.1152+ 1+4  C10.472+ 1+4  C22⋊Q825D5  C10.152- 1+4  C10.212- 1+4  C10.772- 1+4  C10.572+ 1+4  C10.582+ 1+4  C10.802- 1+4  C10.632+ 1+4  C10.852- 1+4  C10.692+ 1+4  Dic107Q8  C42.147D10  D5×C42.C2  C42.148D10  D207Q8  C42.152D10  C42.154D10  C42.155D10  C42.159D10  C42.161D10  C42.162D10  C42.165D10  Dic108Q8  C42.241D10  C42.174D10  D209Q8  Dic3.Dic10  Dic3.2Dic10  C12.Dic10  C20.Dic6  C4.Dic30
C4.Dic10 is a maximal quotient of
C4⋊Dic515C4  C10.52(C4×D4)  (C2×C4).Dic10  C10.(C4⋊Q8)  C204(C4⋊C4)  C20.48(C4⋊C4)  (C2×C20).54D4  C206(C4⋊C4)  (C2×C20).55D4  Dic3.Dic10  Dic3.2Dic10  C12.Dic10  C20.Dic6  C4.Dic30

34 conjugacy classes

class 1 2A2B2C4A4B4C4D4E4F4G4H4I4J5A5B10A···10F20A···20L
order122244444444445510···1020···20
size11112244101010102020222···24···4

34 irreducible representations

dim111112222244
type+++++-++--+
imageC1C2C2C2C2Q8D5C4○D4D10Dic10D42D5Q82D5
kernelC4.Dic10C4×Dic5C10.D4C4⋊Dic5C5×C4⋊C4C20C4⋊C4C10C2×C4C4C2C2
# reps112312246822

Matrix representation of C4.Dic10 in GL4(𝔽41) generated by

1000
0100
00203
00321
,
11200
252700
0001
00400
,
182700
322300
00320
00032
G:=sub<GL(4,GF(41))| [1,0,0,0,0,1,0,0,0,0,20,3,0,0,3,21],[11,25,0,0,2,27,0,0,0,0,0,40,0,0,1,0],[18,32,0,0,27,23,0,0,0,0,32,0,0,0,0,32] >;

C4.Dic10 in GAP, Magma, Sage, TeX

C_4.{\rm Dic}_{10}
% in TeX

G:=Group("C4.Dic10");
// GroupNames label

G:=SmallGroup(160,111);
// by ID

G=gap.SmallGroup(160,111);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-5,48,103,506,188,50,4613]);
// Polycyclic

G:=Group<a,b,c|a^4=b^20=1,c^2=b^10,b*a*b^-1=a^-1,a*c=c*a,c*b*c^-1=a^2*b^-1>;
// generators/relations

׿
×
𝔽