Extensions 1→N→G→Q→1 with N=C2xC4 and Q=C5xQ8

Direct product G=NxQ with N=C2xC4 and Q=C5xQ8
dρLabelID
Q8xC2xC20320Q8xC2xC20320,1518

Semidirect products G=N:Q with N=C2xC4 and Q=C5xQ8
extensionφ:Q→Aut NdρLabelID
(C2xC4):1(C5xQ8) = C5xC23.78C23φ: C5xQ8/C10C22 ⊆ Aut C2xC4320(C2xC4):1(C5xQ8)320,896
(C2xC4):2(C5xQ8) = C5xC23.41C23φ: C5xQ8/C10C22 ⊆ Aut C2xC4160(C2xC4):2(C5xQ8)320,1546
(C2xC4):3(C5xQ8) = C5xC23.67C23φ: C5xQ8/C20C2 ⊆ Aut C2xC4320(C2xC4):3(C5xQ8)320,892
(C2xC4):4(C5xQ8) = C10xC4:Q8φ: C5xQ8/C20C2 ⊆ Aut C2xC4320(C2xC4):4(C5xQ8)320,1533
(C2xC4):5(C5xQ8) = C5xC23.37C23φ: C5xQ8/C20C2 ⊆ Aut C2xC4160(C2xC4):5(C5xQ8)320,1535

Non-split extensions G=N.Q with N=C2xC4 and Q=C5xQ8
extensionφ:Q→Aut NdρLabelID
(C2xC4).1(C5xQ8) = C5xC4.9C42φ: C5xQ8/C10C22 ⊆ Aut C2xC4804(C2xC4).1(C5xQ8)320,142
(C2xC4).2(C5xQ8) = C5xC22.C42φ: C5xQ8/C10C22 ⊆ Aut C2xC4160(C2xC4).2(C5xQ8)320,148
(C2xC4).3(C5xQ8) = C5xM4(2):4C4φ: C5xQ8/C10C22 ⊆ Aut C2xC4804(C2xC4).3(C5xQ8)320,149
(C2xC4).4(C5xQ8) = C5xC23.81C23φ: C5xQ8/C10C22 ⊆ Aut C2xC4320(C2xC4).4(C5xQ8)320,899
(C2xC4).5(C5xQ8) = C5xC23.83C23φ: C5xQ8/C10C22 ⊆ Aut C2xC4320(C2xC4).5(C5xQ8)320,901
(C2xC4).6(C5xQ8) = C5xM4(2):C4φ: C5xQ8/C10C22 ⊆ Aut C2xC4160(C2xC4).6(C5xQ8)320,929
(C2xC4).7(C5xQ8) = C5xM4(2).C4φ: C5xQ8/C10C22 ⊆ Aut C2xC4804(C2xC4).7(C5xQ8)320,931
(C2xC4).8(C5xQ8) = C5xC8:2C8φ: C5xQ8/C20C2 ⊆ Aut C2xC4320(C2xC4).8(C5xQ8)320,139
(C2xC4).9(C5xQ8) = C5xC8:1C8φ: C5xQ8/C20C2 ⊆ Aut C2xC4320(C2xC4).9(C5xQ8)320,140
(C2xC4).10(C5xQ8) = C5xC23.63C23φ: C5xQ8/C20C2 ⊆ Aut C2xC4320(C2xC4).10(C5xQ8)320,888
(C2xC4).11(C5xQ8) = C5xC23.65C23φ: C5xQ8/C20C2 ⊆ Aut C2xC4320(C2xC4).11(C5xQ8)320,890
(C2xC4).12(C5xQ8) = C5xC42:6C4φ: C5xQ8/C20C2 ⊆ Aut C2xC480(C2xC4).12(C5xQ8)320,144
(C2xC4).13(C5xQ8) = C5xC22.4Q16φ: C5xQ8/C20C2 ⊆ Aut C2xC4320(C2xC4).13(C5xQ8)320,145
(C2xC4).14(C5xQ8) = C5xC42:8C4φ: C5xQ8/C20C2 ⊆ Aut C2xC4320(C2xC4).14(C5xQ8)320,883
(C2xC4).15(C5xQ8) = C5xC42:9C4φ: C5xQ8/C20C2 ⊆ Aut C2xC4320(C2xC4).15(C5xQ8)320,885
(C2xC4).16(C5xQ8) = C5xC4:M4(2)φ: C5xQ8/C20C2 ⊆ Aut C2xC4160(C2xC4).16(C5xQ8)320,924
(C2xC4).17(C5xQ8) = C5xC42.6C22φ: C5xQ8/C20C2 ⊆ Aut C2xC4160(C2xC4).17(C5xQ8)320,925
(C2xC4).18(C5xQ8) = C10xC4.Q8φ: C5xQ8/C20C2 ⊆ Aut C2xC4320(C2xC4).18(C5xQ8)320,926
(C2xC4).19(C5xQ8) = C10xC2.D8φ: C5xQ8/C20C2 ⊆ Aut C2xC4320(C2xC4).19(C5xQ8)320,927
(C2xC4).20(C5xQ8) = C5xC23.25D4φ: C5xQ8/C20C2 ⊆ Aut C2xC4160(C2xC4).20(C5xQ8)320,928
(C2xC4).21(C5xQ8) = C10xC8.C4φ: C5xQ8/C20C2 ⊆ Aut C2xC4160(C2xC4).21(C5xQ8)320,930
(C2xC4).22(C5xQ8) = C10xC42.C2φ: C5xQ8/C20C2 ⊆ Aut C2xC4320(C2xC4).22(C5xQ8)320,1529
(C2xC4).23(C5xQ8) = C5xC22.7C42central extension (φ=1)320(C2xC4).23(C5xQ8)320,141
(C2xC4).24(C5xQ8) = C4:C4xC20central extension (φ=1)320(C2xC4).24(C5xQ8)320,879
(C2xC4).25(C5xQ8) = C10xC4:C8central extension (φ=1)320(C2xC4).25(C5xQ8)320,923

׿
x
:
Z
F
o
wr
Q
<