direct product, metacyclic, nilpotent (class 2), monomial, 2-elementary
Aliases: C5×Q8, C4.C10, C20.3C2, C10.7C22, C2.2(C2×C10), SmallGroup(40,11)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C5×Q8
G = < a,b,c | a5=b4=1, c2=b2, ab=ba, ac=ca, cbc-1=b-1 >
Character table of C5×Q8
class | 1 | 2 | 4A | 4B | 4C | 5A | 5B | 5C | 5D | 10A | 10B | 10C | 10D | 20A | 20B | 20C | 20D | 20E | 20F | 20G | 20H | 20I | 20J | 20K | 20L | |
size | 1 | 1 | 2 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | -1 | -1 | ζ52 | ζ53 | ζ54 | ζ5 | ζ54 | ζ53 | ζ5 | ζ52 | ζ54 | -ζ54 | -ζ5 | -ζ5 | -ζ52 | -ζ53 | -ζ54 | -ζ52 | ζ5 | ζ52 | ζ53 | -ζ53 | linear of order 10 |
ρ6 | 1 | 1 | -1 | -1 | 1 | ζ52 | ζ53 | ζ54 | ζ5 | ζ54 | ζ53 | ζ5 | ζ52 | -ζ54 | ζ54 | ζ5 | -ζ5 | -ζ52 | -ζ53 | -ζ54 | ζ52 | -ζ5 | -ζ52 | -ζ53 | ζ53 | linear of order 10 |
ρ7 | 1 | 1 | 1 | 1 | 1 | ζ5 | ζ54 | ζ52 | ζ53 | ζ52 | ζ54 | ζ53 | ζ5 | ζ52 | ζ52 | ζ53 | ζ53 | ζ5 | ζ54 | ζ52 | ζ5 | ζ53 | ζ5 | ζ54 | ζ54 | linear of order 5 |
ρ8 | 1 | 1 | -1 | 1 | -1 | ζ54 | ζ5 | ζ53 | ζ52 | ζ53 | ζ5 | ζ52 | ζ54 | -ζ53 | -ζ53 | -ζ52 | ζ52 | ζ54 | ζ5 | ζ53 | -ζ54 | -ζ52 | -ζ54 | -ζ5 | -ζ5 | linear of order 10 |
ρ9 | 1 | 1 | -1 | -1 | 1 | ζ5 | ζ54 | ζ52 | ζ53 | ζ52 | ζ54 | ζ53 | ζ5 | -ζ52 | ζ52 | ζ53 | -ζ53 | -ζ5 | -ζ54 | -ζ52 | ζ5 | -ζ53 | -ζ5 | -ζ54 | ζ54 | linear of order 10 |
ρ10 | 1 | 1 | 1 | -1 | -1 | ζ54 | ζ5 | ζ53 | ζ52 | ζ53 | ζ5 | ζ52 | ζ54 | ζ53 | -ζ53 | -ζ52 | -ζ52 | -ζ54 | -ζ5 | -ζ53 | -ζ54 | ζ52 | ζ54 | ζ5 | -ζ5 | linear of order 10 |
ρ11 | 1 | 1 | 1 | 1 | 1 | ζ53 | ζ52 | ζ5 | ζ54 | ζ5 | ζ52 | ζ54 | ζ53 | ζ5 | ζ5 | ζ54 | ζ54 | ζ53 | ζ52 | ζ5 | ζ53 | ζ54 | ζ53 | ζ52 | ζ52 | linear of order 5 |
ρ12 | 1 | 1 | -1 | 1 | -1 | ζ53 | ζ52 | ζ5 | ζ54 | ζ5 | ζ52 | ζ54 | ζ53 | -ζ5 | -ζ5 | -ζ54 | ζ54 | ζ53 | ζ52 | ζ5 | -ζ53 | -ζ54 | -ζ53 | -ζ52 | -ζ52 | linear of order 10 |
ρ13 | 1 | 1 | -1 | 1 | -1 | ζ5 | ζ54 | ζ52 | ζ53 | ζ52 | ζ54 | ζ53 | ζ5 | -ζ52 | -ζ52 | -ζ53 | ζ53 | ζ5 | ζ54 | ζ52 | -ζ5 | -ζ53 | -ζ5 | -ζ54 | -ζ54 | linear of order 10 |
ρ14 | 1 | 1 | 1 | -1 | -1 | ζ5 | ζ54 | ζ52 | ζ53 | ζ52 | ζ54 | ζ53 | ζ5 | ζ52 | -ζ52 | -ζ53 | -ζ53 | -ζ5 | -ζ54 | -ζ52 | -ζ5 | ζ53 | ζ5 | ζ54 | -ζ54 | linear of order 10 |
ρ15 | 1 | 1 | 1 | -1 | -1 | ζ53 | ζ52 | ζ5 | ζ54 | ζ5 | ζ52 | ζ54 | ζ53 | ζ5 | -ζ5 | -ζ54 | -ζ54 | -ζ53 | -ζ52 | -ζ5 | -ζ53 | ζ54 | ζ53 | ζ52 | -ζ52 | linear of order 10 |
ρ16 | 1 | 1 | -1 | -1 | 1 | ζ53 | ζ52 | ζ5 | ζ54 | ζ5 | ζ52 | ζ54 | ζ53 | -ζ5 | ζ5 | ζ54 | -ζ54 | -ζ53 | -ζ52 | -ζ5 | ζ53 | -ζ54 | -ζ53 | -ζ52 | ζ52 | linear of order 10 |
ρ17 | 1 | 1 | 1 | 1 | 1 | ζ54 | ζ5 | ζ53 | ζ52 | ζ53 | ζ5 | ζ52 | ζ54 | ζ53 | ζ53 | ζ52 | ζ52 | ζ54 | ζ5 | ζ53 | ζ54 | ζ52 | ζ54 | ζ5 | ζ5 | linear of order 5 |
ρ18 | 1 | 1 | 1 | 1 | 1 | ζ52 | ζ53 | ζ54 | ζ5 | ζ54 | ζ53 | ζ5 | ζ52 | ζ54 | ζ54 | ζ5 | ζ5 | ζ52 | ζ53 | ζ54 | ζ52 | ζ5 | ζ52 | ζ53 | ζ53 | linear of order 5 |
ρ19 | 1 | 1 | -1 | 1 | -1 | ζ52 | ζ53 | ζ54 | ζ5 | ζ54 | ζ53 | ζ5 | ζ52 | -ζ54 | -ζ54 | -ζ5 | ζ5 | ζ52 | ζ53 | ζ54 | -ζ52 | -ζ5 | -ζ52 | -ζ53 | -ζ53 | linear of order 10 |
ρ20 | 1 | 1 | -1 | -1 | 1 | ζ54 | ζ5 | ζ53 | ζ52 | ζ53 | ζ5 | ζ52 | ζ54 | -ζ53 | ζ53 | ζ52 | -ζ52 | -ζ54 | -ζ5 | -ζ53 | ζ54 | -ζ52 | -ζ54 | -ζ5 | ζ5 | linear of order 10 |
ρ21 | 2 | -2 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ22 | 2 | -2 | 0 | 0 | 0 | 2ζ54 | 2ζ5 | 2ζ53 | 2ζ52 | -2ζ53 | -2ζ5 | -2ζ52 | -2ζ54 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ23 | 2 | -2 | 0 | 0 | 0 | 2ζ5 | 2ζ54 | 2ζ52 | 2ζ53 | -2ζ52 | -2ζ54 | -2ζ53 | -2ζ5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ24 | 2 | -2 | 0 | 0 | 0 | 2ζ52 | 2ζ53 | 2ζ54 | 2ζ5 | -2ζ54 | -2ζ53 | -2ζ5 | -2ζ52 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ25 | 2 | -2 | 0 | 0 | 0 | 2ζ53 | 2ζ52 | 2ζ5 | 2ζ54 | -2ζ5 | -2ζ52 | -2ζ54 | -2ζ53 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)
(1 23 13 17)(2 24 14 18)(3 25 15 19)(4 21 11 20)(5 22 12 16)(6 30 40 31)(7 26 36 32)(8 27 37 33)(9 28 38 34)(10 29 39 35)
(1 33 13 27)(2 34 14 28)(3 35 15 29)(4 31 11 30)(5 32 12 26)(6 21 40 20)(7 22 36 16)(8 23 37 17)(9 24 38 18)(10 25 39 19)
G:=sub<Sym(40)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40), (1,23,13,17)(2,24,14,18)(3,25,15,19)(4,21,11,20)(5,22,12,16)(6,30,40,31)(7,26,36,32)(8,27,37,33)(9,28,38,34)(10,29,39,35), (1,33,13,27)(2,34,14,28)(3,35,15,29)(4,31,11,30)(5,32,12,26)(6,21,40,20)(7,22,36,16)(8,23,37,17)(9,24,38,18)(10,25,39,19)>;
G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40), (1,23,13,17)(2,24,14,18)(3,25,15,19)(4,21,11,20)(5,22,12,16)(6,30,40,31)(7,26,36,32)(8,27,37,33)(9,28,38,34)(10,29,39,35), (1,33,13,27)(2,34,14,28)(3,35,15,29)(4,31,11,30)(5,32,12,26)(6,21,40,20)(7,22,36,16)(8,23,37,17)(9,24,38,18)(10,25,39,19) );
G=PermutationGroup([[(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40)], [(1,23,13,17),(2,24,14,18),(3,25,15,19),(4,21,11,20),(5,22,12,16),(6,30,40,31),(7,26,36,32),(8,27,37,33),(9,28,38,34),(10,29,39,35)], [(1,33,13,27),(2,34,14,28),(3,35,15,29),(4,31,11,30),(5,32,12,26),(6,21,40,20),(7,22,36,16),(8,23,37,17),(9,24,38,18),(10,25,39,19)]])
C5×Q8 is a maximal subgroup of
Q8⋊D5 C5⋊Q16 Q8⋊2D5 C4.F11
C5×Q8 is a maximal quotient of C4.F11
Matrix representation of C5×Q8 ►in GL2(𝔽11) generated by
5 | 0 |
0 | 5 |
4 | 7 |
7 | 7 |
0 | 10 |
1 | 0 |
G:=sub<GL(2,GF(11))| [5,0,0,5],[4,7,7,7],[0,1,10,0] >;
C5×Q8 in GAP, Magma, Sage, TeX
C_5\times Q_8
% in TeX
G:=Group("C5xQ8");
// GroupNames label
G:=SmallGroup(40,11);
// by ID
G=gap.SmallGroup(40,11);
# by ID
G:=PCGroup([4,-2,-2,-5,-2,80,177,85]);
// Polycyclic
G:=Group<a,b,c|a^5=b^4=1,c^2=b^2,a*b=b*a,a*c=c*a,c*b*c^-1=b^-1>;
// generators/relations
Export
Subgroup lattice of C5×Q8 in TeX
Character table of C5×Q8 in TeX