Copied to
clipboard

G = C5×Q8order 40 = 23·5

Direct product of C5 and Q8

direct product, metacyclic, nilpotent (class 2), monomial, 2-elementary

Aliases: C5×Q8, C4.C10, C20.3C2, C10.7C22, C2.2(C2×C10), SmallGroup(40,11)

Series: Derived Chief Lower central Upper central

C1C2 — C5×Q8
C1C2C10C20 — C5×Q8
C1C2 — C5×Q8
C1C10 — C5×Q8

Generators and relations for C5×Q8
 G = < a,b,c | a5=b4=1, c2=b2, ab=ba, ac=ca, cbc-1=b-1 >


Character table of C5×Q8

 class 124A4B4C5A5B5C5D10A10B10C10D20A20B20C20D20E20F20G20H20I20J20K20L
 size 1122211111111222222222222
ρ11111111111111111111111111    trivial
ρ2111-1-1111111111-1-1-1-1-1-1-1111-1    linear of order 2
ρ311-11-111111111-1-1-11111-1-1-1-1-1    linear of order 2
ρ411-1-1111111111-111-1-1-1-11-1-1-11    linear of order 2
ρ5111-1-1ζ52ζ53ζ54ζ5ζ54ζ53ζ5ζ52ζ54545552535452ζ5ζ52ζ5353    linear of order 10
ρ611-1-11ζ52ζ53ζ54ζ5ζ54ζ53ζ5ζ5254ζ54ζ55525354ζ5255253ζ53    linear of order 10
ρ711111ζ5ζ54ζ52ζ53ζ52ζ54ζ53ζ5ζ52ζ52ζ53ζ53ζ5ζ54ζ52ζ5ζ53ζ5ζ54ζ54    linear of order 5
ρ811-11-1ζ54ζ5ζ53ζ52ζ53ζ5ζ52ζ54535352ζ52ζ54ζ5ζ5354525455    linear of order 10
ρ911-1-11ζ5ζ54ζ52ζ53ζ52ζ54ζ53ζ552ζ52ζ535355452ζ553554ζ54    linear of order 10
ρ10111-1-1ζ54ζ5ζ53ζ52ζ53ζ5ζ52ζ54ζ535352525455354ζ52ζ54ζ55    linear of order 10
ρ1111111ζ53ζ52ζ5ζ54ζ5ζ52ζ54ζ53ζ5ζ5ζ54ζ54ζ53ζ52ζ5ζ53ζ54ζ53ζ52ζ52    linear of order 5
ρ1211-11-1ζ53ζ52ζ5ζ54ζ5ζ52ζ54ζ535554ζ54ζ53ζ52ζ55354535252    linear of order 10
ρ1311-11-1ζ5ζ54ζ52ζ53ζ52ζ54ζ53ζ5525253ζ53ζ5ζ54ζ5255355454    linear of order 10
ρ14111-1-1ζ5ζ54ζ52ζ53ζ52ζ54ζ53ζ5ζ52525353554525ζ53ζ5ζ5454    linear of order 10
ρ15111-1-1ζ53ζ52ζ5ζ54ζ5ζ52ζ54ζ53ζ5554545352553ζ54ζ53ζ5252    linear of order 10
ρ1611-1-11ζ53ζ52ζ5ζ54ζ5ζ52ζ54ζ535ζ5ζ545453525ζ53545352ζ52    linear of order 10
ρ1711111ζ54ζ5ζ53ζ52ζ53ζ5ζ52ζ54ζ53ζ53ζ52ζ52ζ54ζ5ζ53ζ54ζ52ζ54ζ5ζ5    linear of order 5
ρ1811111ζ52ζ53ζ54ζ5ζ54ζ53ζ5ζ52ζ54ζ54ζ5ζ5ζ52ζ53ζ54ζ52ζ5ζ52ζ53ζ53    linear of order 5
ρ1911-11-1ζ52ζ53ζ54ζ5ζ54ζ53ζ5ζ5254545ζ5ζ52ζ53ζ54525525353    linear of order 10
ρ2011-1-11ζ54ζ5ζ53ζ52ζ53ζ5ζ52ζ5453ζ53ζ525254553ζ5452545ζ5    linear of order 10
ρ212-20002222-2-2-2-2000000000000    symplectic lifted from Q8, Schur index 2
ρ222-20005455352-2ζ53-2ζ5-2ζ52-2ζ54000000000000    complex faithful
ρ232-20005545253-2ζ52-2ζ54-2ζ53-2ζ5000000000000    complex faithful
ρ242-20005253545-2ζ54-2ζ53-2ζ5-2ζ52000000000000    complex faithful
ρ252-20005352554-2ζ5-2ζ52-2ζ54-2ζ53000000000000    complex faithful

Smallest permutation representation of C5×Q8
Regular action on 40 points
Generators in S40
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)
(1 23 13 17)(2 24 14 18)(3 25 15 19)(4 21 11 20)(5 22 12 16)(6 30 40 31)(7 26 36 32)(8 27 37 33)(9 28 38 34)(10 29 39 35)
(1 33 13 27)(2 34 14 28)(3 35 15 29)(4 31 11 30)(5 32 12 26)(6 21 40 20)(7 22 36 16)(8 23 37 17)(9 24 38 18)(10 25 39 19)

G:=sub<Sym(40)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40), (1,23,13,17)(2,24,14,18)(3,25,15,19)(4,21,11,20)(5,22,12,16)(6,30,40,31)(7,26,36,32)(8,27,37,33)(9,28,38,34)(10,29,39,35), (1,33,13,27)(2,34,14,28)(3,35,15,29)(4,31,11,30)(5,32,12,26)(6,21,40,20)(7,22,36,16)(8,23,37,17)(9,24,38,18)(10,25,39,19)>;

G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40), (1,23,13,17)(2,24,14,18)(3,25,15,19)(4,21,11,20)(5,22,12,16)(6,30,40,31)(7,26,36,32)(8,27,37,33)(9,28,38,34)(10,29,39,35), (1,33,13,27)(2,34,14,28)(3,35,15,29)(4,31,11,30)(5,32,12,26)(6,21,40,20)(7,22,36,16)(8,23,37,17)(9,24,38,18)(10,25,39,19) );

G=PermutationGroup([(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40)], [(1,23,13,17),(2,24,14,18),(3,25,15,19),(4,21,11,20),(5,22,12,16),(6,30,40,31),(7,26,36,32),(8,27,37,33),(9,28,38,34),(10,29,39,35)], [(1,33,13,27),(2,34,14,28),(3,35,15,29),(4,31,11,30),(5,32,12,26),(6,21,40,20),(7,22,36,16),(8,23,37,17),(9,24,38,18),(10,25,39,19)])

Matrix representation of C5×Q8 in GL2(𝔽11) generated by

50
05
,
47
77
,
010
10
G:=sub<GL(2,GF(11))| [5,0,0,5],[4,7,7,7],[0,1,10,0] >;

C5×Q8 in GAP, Magma, Sage, TeX

C_5\times Q_8
% in TeX

G:=Group("C5xQ8");
// GroupNames label

G:=SmallGroup(40,11);
// by ID

G=gap.SmallGroup(40,11);
# by ID

G:=PCGroup([4,-2,-2,-5,-2,80,177,85]);
// Polycyclic

G:=Group<a,b,c|a^5=b^4=1,c^2=b^2,a*b=b*a,a*c=c*a,c*b*c^-1=b^-1>;
// generators/relations

׿
×
𝔽