Extensions 1→N→G→Q→1 with N=C2 and Q=C2×Dic20

Direct product G=N×Q with N=C2 and Q=C2×Dic20
dρLabelID
C22×Dic20320C2^2xDic20320,1414


Non-split extensions G=N.Q with N=C2 and Q=C2×Dic20
extensionφ:Q→Aut NdρLabelID
C2.1(C2×Dic20) = C4×Dic20central extension (φ=1)320C2.1(C2xDic20)320,325
C2.2(C2×Dic20) = C2×C20.44D4central extension (φ=1)320C2.2(C2xDic20)320,730
C2.3(C2×Dic20) = C2×C405C4central extension (φ=1)320C2.3(C2xDic20)320,732
C2.4(C2×Dic20) = C20.14Q16central stem extension (φ=1)320C2.4(C2xDic20)320,308
C2.5(C2×Dic20) = C408Q8central stem extension (φ=1)320C2.5(C2xDic20)320,309
C2.6(C2×Dic20) = C204Q16central stem extension (φ=1)320C2.6(C2xDic20)320,326
C2.7(C2×Dic20) = C23.35D20central stem extension (φ=1)160C2.7(C2xDic20)320,349
C2.8(C2×Dic20) = C22⋊Dic20central stem extension (φ=1)160C2.8(C2xDic20)320,366
C2.9(C2×Dic20) = C4⋊Dic20central stem extension (φ=1)320C2.9(C2xDic20)320,476
C2.10(C2×Dic20) = C20.7Q16central stem extension (φ=1)320C2.10(C2xDic20)320,477
C2.11(C2×Dic20) = C40.82D4central stem extension (φ=1)160C2.11(C2xDic20)320,743

׿
×
𝔽