Copied to
clipboard

G = C40.82D4order 320 = 26·5

5th non-split extension by C40 of D4 acting via D4/C22=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C40.82D4, C221Dic20, C23.26D20, (C2×C10)⋊5Q16, C405C415C2, (C2×C4).69D20, (C22×C8).9D5, (C2×Dic20)⋊9C2, (C2×C20).357D4, (C2×C8).309D10, C20.414(C2×D4), C8.39(C5⋊D4), C54(C8.18D4), C10.11(C2×Q16), C10.19(C4○D8), C20.44D43C2, (C22×C40).15C2, C2.11(C2×Dic20), C20.229(C4○D4), C4.113(C4○D20), C2.20(C207D4), C10.72(C4⋊D4), (C2×C20).770C23, (C2×C40).381C22, C20.48D4.5C2, (C22×C4).432D10, (C22×C10).142D4, C22.133(C2×D20), C4⋊Dic5.25C22, C2.19(D407C2), (C22×C20).520C22, (C2×Dic10).20C22, C4.107(C2×C5⋊D4), (C2×C10).160(C2×D4), (C2×C4).718(C22×D5), SmallGroup(320,743)

Series: Derived Chief Lower central Upper central

C1C2×C20 — C40.82D4
C1C5C10C2×C10C2×C20C2×Dic10C2×Dic20 — C40.82D4
C5C10C2×C20 — C40.82D4
C1C22C22×C4C22×C8

Generators and relations for C40.82D4
 G = < a,b,c | a40=b4=1, c2=a20, bab-1=cac-1=a-1, cbc-1=a20b-1 >

Subgroups: 406 in 114 conjugacy classes, 47 normal (31 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C5, C8, C8, C2×C4, C2×C4, Q8, C23, C10, C10, C22⋊C4, C4⋊C4, C2×C8, C2×C8, Q16, C22×C4, C2×Q8, Dic5, C20, C20, C2×C10, C2×C10, C2×C10, Q8⋊C4, C2.D8, C22⋊Q8, C22×C8, C2×Q16, C40, C40, Dic10, C2×Dic5, C2×C20, C2×C20, C22×C10, C8.18D4, Dic20, C10.D4, C4⋊Dic5, C23.D5, C2×C40, C2×C40, C2×Dic10, C22×C20, C20.44D4, C405C4, C2×Dic20, C20.48D4, C22×C40, C40.82D4
Quotients: C1, C2, C22, D4, C23, D5, Q16, C2×D4, C4○D4, D10, C4⋊D4, C2×Q16, C4○D8, D20, C5⋊D4, C22×D5, C8.18D4, Dic20, C2×D20, C4○D20, C2×C5⋊D4, D407C2, C2×Dic20, C207D4, C40.82D4

Smallest permutation representation of C40.82D4
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 47 100 145)(2 46 101 144)(3 45 102 143)(4 44 103 142)(5 43 104 141)(6 42 105 140)(7 41 106 139)(8 80 107 138)(9 79 108 137)(10 78 109 136)(11 77 110 135)(12 76 111 134)(13 75 112 133)(14 74 113 132)(15 73 114 131)(16 72 115 130)(17 71 116 129)(18 70 117 128)(19 69 118 127)(20 68 119 126)(21 67 120 125)(22 66 81 124)(23 65 82 123)(24 64 83 122)(25 63 84 121)(26 62 85 160)(27 61 86 159)(28 60 87 158)(29 59 88 157)(30 58 89 156)(31 57 90 155)(32 56 91 154)(33 55 92 153)(34 54 93 152)(35 53 94 151)(36 52 95 150)(37 51 96 149)(38 50 97 148)(39 49 98 147)(40 48 99 146)
(1 125 21 145)(2 124 22 144)(3 123 23 143)(4 122 24 142)(5 121 25 141)(6 160 26 140)(7 159 27 139)(8 158 28 138)(9 157 29 137)(10 156 30 136)(11 155 31 135)(12 154 32 134)(13 153 33 133)(14 152 34 132)(15 151 35 131)(16 150 36 130)(17 149 37 129)(18 148 38 128)(19 147 39 127)(20 146 40 126)(41 106 61 86)(42 105 62 85)(43 104 63 84)(44 103 64 83)(45 102 65 82)(46 101 66 81)(47 100 67 120)(48 99 68 119)(49 98 69 118)(50 97 70 117)(51 96 71 116)(52 95 72 115)(53 94 73 114)(54 93 74 113)(55 92 75 112)(56 91 76 111)(57 90 77 110)(58 89 78 109)(59 88 79 108)(60 87 80 107)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,47,100,145)(2,46,101,144)(3,45,102,143)(4,44,103,142)(5,43,104,141)(6,42,105,140)(7,41,106,139)(8,80,107,138)(9,79,108,137)(10,78,109,136)(11,77,110,135)(12,76,111,134)(13,75,112,133)(14,74,113,132)(15,73,114,131)(16,72,115,130)(17,71,116,129)(18,70,117,128)(19,69,118,127)(20,68,119,126)(21,67,120,125)(22,66,81,124)(23,65,82,123)(24,64,83,122)(25,63,84,121)(26,62,85,160)(27,61,86,159)(28,60,87,158)(29,59,88,157)(30,58,89,156)(31,57,90,155)(32,56,91,154)(33,55,92,153)(34,54,93,152)(35,53,94,151)(36,52,95,150)(37,51,96,149)(38,50,97,148)(39,49,98,147)(40,48,99,146), (1,125,21,145)(2,124,22,144)(3,123,23,143)(4,122,24,142)(5,121,25,141)(6,160,26,140)(7,159,27,139)(8,158,28,138)(9,157,29,137)(10,156,30,136)(11,155,31,135)(12,154,32,134)(13,153,33,133)(14,152,34,132)(15,151,35,131)(16,150,36,130)(17,149,37,129)(18,148,38,128)(19,147,39,127)(20,146,40,126)(41,106,61,86)(42,105,62,85)(43,104,63,84)(44,103,64,83)(45,102,65,82)(46,101,66,81)(47,100,67,120)(48,99,68,119)(49,98,69,118)(50,97,70,117)(51,96,71,116)(52,95,72,115)(53,94,73,114)(54,93,74,113)(55,92,75,112)(56,91,76,111)(57,90,77,110)(58,89,78,109)(59,88,79,108)(60,87,80,107)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,47,100,145)(2,46,101,144)(3,45,102,143)(4,44,103,142)(5,43,104,141)(6,42,105,140)(7,41,106,139)(8,80,107,138)(9,79,108,137)(10,78,109,136)(11,77,110,135)(12,76,111,134)(13,75,112,133)(14,74,113,132)(15,73,114,131)(16,72,115,130)(17,71,116,129)(18,70,117,128)(19,69,118,127)(20,68,119,126)(21,67,120,125)(22,66,81,124)(23,65,82,123)(24,64,83,122)(25,63,84,121)(26,62,85,160)(27,61,86,159)(28,60,87,158)(29,59,88,157)(30,58,89,156)(31,57,90,155)(32,56,91,154)(33,55,92,153)(34,54,93,152)(35,53,94,151)(36,52,95,150)(37,51,96,149)(38,50,97,148)(39,49,98,147)(40,48,99,146), (1,125,21,145)(2,124,22,144)(3,123,23,143)(4,122,24,142)(5,121,25,141)(6,160,26,140)(7,159,27,139)(8,158,28,138)(9,157,29,137)(10,156,30,136)(11,155,31,135)(12,154,32,134)(13,153,33,133)(14,152,34,132)(15,151,35,131)(16,150,36,130)(17,149,37,129)(18,148,38,128)(19,147,39,127)(20,146,40,126)(41,106,61,86)(42,105,62,85)(43,104,63,84)(44,103,64,83)(45,102,65,82)(46,101,66,81)(47,100,67,120)(48,99,68,119)(49,98,69,118)(50,97,70,117)(51,96,71,116)(52,95,72,115)(53,94,73,114)(54,93,74,113)(55,92,75,112)(56,91,76,111)(57,90,77,110)(58,89,78,109)(59,88,79,108)(60,87,80,107) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,47,100,145),(2,46,101,144),(3,45,102,143),(4,44,103,142),(5,43,104,141),(6,42,105,140),(7,41,106,139),(8,80,107,138),(9,79,108,137),(10,78,109,136),(11,77,110,135),(12,76,111,134),(13,75,112,133),(14,74,113,132),(15,73,114,131),(16,72,115,130),(17,71,116,129),(18,70,117,128),(19,69,118,127),(20,68,119,126),(21,67,120,125),(22,66,81,124),(23,65,82,123),(24,64,83,122),(25,63,84,121),(26,62,85,160),(27,61,86,159),(28,60,87,158),(29,59,88,157),(30,58,89,156),(31,57,90,155),(32,56,91,154),(33,55,92,153),(34,54,93,152),(35,53,94,151),(36,52,95,150),(37,51,96,149),(38,50,97,148),(39,49,98,147),(40,48,99,146)], [(1,125,21,145),(2,124,22,144),(3,123,23,143),(4,122,24,142),(5,121,25,141),(6,160,26,140),(7,159,27,139),(8,158,28,138),(9,157,29,137),(10,156,30,136),(11,155,31,135),(12,154,32,134),(13,153,33,133),(14,152,34,132),(15,151,35,131),(16,150,36,130),(17,149,37,129),(18,148,38,128),(19,147,39,127),(20,146,40,126),(41,106,61,86),(42,105,62,85),(43,104,63,84),(44,103,64,83),(45,102,65,82),(46,101,66,81),(47,100,67,120),(48,99,68,119),(49,98,69,118),(50,97,70,117),(51,96,71,116),(52,95,72,115),(53,94,73,114),(54,93,74,113),(55,92,75,112),(56,91,76,111),(57,90,77,110),(58,89,78,109),(59,88,79,108),(60,87,80,107)]])

86 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E4F4G4H5A5B8A···8H10A···10N20A···20P40A···40AF
order12222244444444558···810···1020···2040···40
size111122222240404040222···22···22···22···2

86 irreducible representations

dim111111222222222222222
type++++++++++-++++-
imageC1C2C2C2C2C2D4D4D4D5C4○D4Q16D10D10C4○D8C5⋊D4D20D20C4○D20Dic20D407C2
kernelC40.82D4C20.44D4C405C4C2×Dic20C20.48D4C22×C40C40C2×C20C22×C10C22×C8C20C2×C10C2×C8C22×C4C10C8C2×C4C23C4C22C2
# reps12112121122442484481616

Matrix representation of C40.82D4 in GL4(𝔽41) generated by

7000
0600
00180
002316
,
0100
1000
00409
00181
,
0100
40000
00409
0001
G:=sub<GL(4,GF(41))| [7,0,0,0,0,6,0,0,0,0,18,23,0,0,0,16],[0,1,0,0,1,0,0,0,0,0,40,18,0,0,9,1],[0,40,0,0,1,0,0,0,0,0,40,0,0,0,9,1] >;

C40.82D4 in GAP, Magma, Sage, TeX

C_{40}._{82}D_4
% in TeX

G:=Group("C40.82D4");
// GroupNames label

G:=SmallGroup(320,743);
// by ID

G=gap.SmallGroup(320,743);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,224,253,344,254,1684,102,12550]);
// Polycyclic

G:=Group<a,b,c|a^40=b^4=1,c^2=a^20,b*a*b^-1=c*a*c^-1=a^-1,c*b*c^-1=a^20*b^-1>;
// generators/relations

׿
×
𝔽