Extensions 1→N→G→Q→1 with N=C2 and Q=C2×C4.Dic5

Direct product G=N×Q with N=C2 and Q=C2×C4.Dic5
dρLabelID
C22×C4.Dic5160C2^2xC4.Dic5320,1453


Non-split extensions G=N.Q with N=C2 and Q=C2×C4.Dic5
extensionφ:Q→Aut NdρLabelID
C2.1(C2×C4.Dic5) = C2×C42.D5central extension (φ=1)320C2.1(C2xC4.Dic5)320,548
C2.2(C2×C4.Dic5) = C4×C4.Dic5central extension (φ=1)160C2.2(C2xC4.Dic5)320,549
C2.3(C2×C4.Dic5) = C2×C203C8central extension (φ=1)320C2.3(C2xC4.Dic5)320,550
C2.4(C2×C4.Dic5) = C42.6Dic5central extension (φ=1)160C2.4(C2xC4.Dic5)320,552
C2.5(C2×C4.Dic5) = C2×C20.55D4central extension (φ=1)160C2.5(C2xC4.Dic5)320,833
C2.6(C2×C4.Dic5) = C2013M4(2)central stem extension (φ=1)160C2.6(C2xC4.Dic5)320,551
C2.7(C2×C4.Dic5) = C42.7Dic5central stem extension (φ=1)160C2.7(C2xC4.Dic5)320,553
C2.8(C2×C4.Dic5) = C42.47D10central stem extension (φ=1)160C2.8(C2xC4.Dic5)320,638
C2.9(C2×C4.Dic5) = C207M4(2)central stem extension (φ=1)160C2.9(C2xC4.Dic5)320,639
C2.10(C2×C4.Dic5) = C42.210D10central stem extension (φ=1)320C2.10(C2xC4.Dic5)320,651
C2.11(C2×C4.Dic5) = C24.4Dic5central stem extension (φ=1)80C2.11(C2xC4.Dic5)320,834

׿
×
𝔽