Copied to
clipboard

G = C2×C4.Dic5order 160 = 25·5

Direct product of C2 and C4.Dic5

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×C4.Dic5, C104M4(2), C20.41C23, C23.3Dic5, C56(C2×M4(2)), C20.57(C2×C4), (C2×C20).20C4, (C2×C4).6Dic5, C4.9(C2×Dic5), (C22×C4).4D5, C52C812C22, (C2×C4).100D10, (C22×C20).9C2, C4.41(C22×D5), (C22×C10).11C4, C10.34(C22×C4), C2.3(C22×Dic5), (C2×C20).100C22, C22.12(C2×Dic5), (C2×C52C8)⋊12C2, (C2×C10).52(C2×C4), SmallGroup(160,142)

Series: Derived Chief Lower central Upper central

C1C10 — C2×C4.Dic5
C1C5C10C20C52C8C2×C52C8 — C2×C4.Dic5
C5C10 — C2×C4.Dic5
C1C2×C4C22×C4

Generators and relations for C2×C4.Dic5
 G = < a,b,c,d | a2=b4=1, c10=b2, d2=c5, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=b-1, dcd-1=c9 >

Subgroups: 120 in 68 conjugacy classes, 49 normal (19 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C5, C8, C2×C4, C2×C4, C23, C10, C10, C10, C2×C8, M4(2), C22×C4, C20, C20, C2×C10, C2×C10, C2×C10, C2×M4(2), C52C8, C2×C20, C2×C20, C22×C10, C2×C52C8, C4.Dic5, C22×C20, C2×C4.Dic5
Quotients: C1, C2, C4, C22, C2×C4, C23, D5, M4(2), C22×C4, Dic5, D10, C2×M4(2), C2×Dic5, C22×D5, C4.Dic5, C22×Dic5, C2×C4.Dic5

Smallest permutation representation of C2×C4.Dic5
On 80 points
Generators in S80
(1 36)(2 37)(3 38)(4 39)(5 40)(6 21)(7 22)(8 23)(9 24)(10 25)(11 26)(12 27)(13 28)(14 29)(15 30)(16 31)(17 32)(18 33)(19 34)(20 35)(41 78)(42 79)(43 80)(44 61)(45 62)(46 63)(47 64)(48 65)(49 66)(50 67)(51 68)(52 69)(53 70)(54 71)(55 72)(56 73)(57 74)(58 75)(59 76)(60 77)
(1 6 11 16)(2 7 12 17)(3 8 13 18)(4 9 14 19)(5 10 15 20)(21 26 31 36)(22 27 32 37)(23 28 33 38)(24 29 34 39)(25 30 35 40)(41 56 51 46)(42 57 52 47)(43 58 53 48)(44 59 54 49)(45 60 55 50)(61 76 71 66)(62 77 72 67)(63 78 73 68)(64 79 74 69)(65 80 75 70)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)
(1 50 6 55 11 60 16 45)(2 59 7 44 12 49 17 54)(3 48 8 53 13 58 18 43)(4 57 9 42 14 47 19 52)(5 46 10 51 15 56 20 41)(21 72 26 77 31 62 36 67)(22 61 27 66 32 71 37 76)(23 70 28 75 33 80 38 65)(24 79 29 64 34 69 39 74)(25 68 30 73 35 78 40 63)

G:=sub<Sym(80)| (1,36)(2,37)(3,38)(4,39)(5,40)(6,21)(7,22)(8,23)(9,24)(10,25)(11,26)(12,27)(13,28)(14,29)(15,30)(16,31)(17,32)(18,33)(19,34)(20,35)(41,78)(42,79)(43,80)(44,61)(45,62)(46,63)(47,64)(48,65)(49,66)(50,67)(51,68)(52,69)(53,70)(54,71)(55,72)(56,73)(57,74)(58,75)(59,76)(60,77), (1,6,11,16)(2,7,12,17)(3,8,13,18)(4,9,14,19)(5,10,15,20)(21,26,31,36)(22,27,32,37)(23,28,33,38)(24,29,34,39)(25,30,35,40)(41,56,51,46)(42,57,52,47)(43,58,53,48)(44,59,54,49)(45,60,55,50)(61,76,71,66)(62,77,72,67)(63,78,73,68)(64,79,74,69)(65,80,75,70), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,50,6,55,11,60,16,45)(2,59,7,44,12,49,17,54)(3,48,8,53,13,58,18,43)(4,57,9,42,14,47,19,52)(5,46,10,51,15,56,20,41)(21,72,26,77,31,62,36,67)(22,61,27,66,32,71,37,76)(23,70,28,75,33,80,38,65)(24,79,29,64,34,69,39,74)(25,68,30,73,35,78,40,63)>;

G:=Group( (1,36)(2,37)(3,38)(4,39)(5,40)(6,21)(7,22)(8,23)(9,24)(10,25)(11,26)(12,27)(13,28)(14,29)(15,30)(16,31)(17,32)(18,33)(19,34)(20,35)(41,78)(42,79)(43,80)(44,61)(45,62)(46,63)(47,64)(48,65)(49,66)(50,67)(51,68)(52,69)(53,70)(54,71)(55,72)(56,73)(57,74)(58,75)(59,76)(60,77), (1,6,11,16)(2,7,12,17)(3,8,13,18)(4,9,14,19)(5,10,15,20)(21,26,31,36)(22,27,32,37)(23,28,33,38)(24,29,34,39)(25,30,35,40)(41,56,51,46)(42,57,52,47)(43,58,53,48)(44,59,54,49)(45,60,55,50)(61,76,71,66)(62,77,72,67)(63,78,73,68)(64,79,74,69)(65,80,75,70), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,50,6,55,11,60,16,45)(2,59,7,44,12,49,17,54)(3,48,8,53,13,58,18,43)(4,57,9,42,14,47,19,52)(5,46,10,51,15,56,20,41)(21,72,26,77,31,62,36,67)(22,61,27,66,32,71,37,76)(23,70,28,75,33,80,38,65)(24,79,29,64,34,69,39,74)(25,68,30,73,35,78,40,63) );

G=PermutationGroup([[(1,36),(2,37),(3,38),(4,39),(5,40),(6,21),(7,22),(8,23),(9,24),(10,25),(11,26),(12,27),(13,28),(14,29),(15,30),(16,31),(17,32),(18,33),(19,34),(20,35),(41,78),(42,79),(43,80),(44,61),(45,62),(46,63),(47,64),(48,65),(49,66),(50,67),(51,68),(52,69),(53,70),(54,71),(55,72),(56,73),(57,74),(58,75),(59,76),(60,77)], [(1,6,11,16),(2,7,12,17),(3,8,13,18),(4,9,14,19),(5,10,15,20),(21,26,31,36),(22,27,32,37),(23,28,33,38),(24,29,34,39),(25,30,35,40),(41,56,51,46),(42,57,52,47),(43,58,53,48),(44,59,54,49),(45,60,55,50),(61,76,71,66),(62,77,72,67),(63,78,73,68),(64,79,74,69),(65,80,75,70)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)], [(1,50,6,55,11,60,16,45),(2,59,7,44,12,49,17,54),(3,48,8,53,13,58,18,43),(4,57,9,42,14,47,19,52),(5,46,10,51,15,56,20,41),(21,72,26,77,31,62,36,67),(22,61,27,66,32,71,37,76),(23,70,28,75,33,80,38,65),(24,79,29,64,34,69,39,74),(25,68,30,73,35,78,40,63)]])

C2×C4.Dic5 is a maximal subgroup of
C426Dic5  (C2×C20).Q8  C421Dic5  C20.32C42  C20.60(C4⋊C4)  C20.40C42  M4(2)⋊Dic5  (C2×C40)⋊C4  C20.34C42  M4(2)⋊4Dic5  C20.51C42  C20.29M4(2)  D104M4(2)  Dic52M4(2)  C2013M4(2)  C20.47(C4⋊C4)  C4○D209C4  C20.64(C4⋊C4)  C20.35C42  C42.43D10  C4⋊C436D10  C4.(C2×D20)  C424D10  C42.47D10  C207M4(2)  C4⋊D4⋊D5  C4.(D4×D5)  C22⋊Q8⋊D5  C5⋊(C8.D4)  C20.42C42  C20.65(C4⋊C4)  (C22×C8)⋊D5  M4(2)×Dic5  Dic55M4(2)  C23.Dic10  M4(2).Dic5  D108M4(2)  M4(2).31D10  C24.4Dic5  (D4×C10)⋊18C4  (Q8×C10)⋊16C4  C4○D4⋊Dic5  (D4×C10).24C4  (D4×C10)⋊21C4  (D4×C10).29C4  C2×D5×M4(2)  C40.47C23  C20.76C24  C20.C24
C2×C4.Dic5 is a maximal quotient of
C2013M4(2)  C42.6Dic5  C42.7Dic5  C42.47D10  C207M4(2)  C42.210D10  C24.4Dic5

52 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E4F5A5B8A···8H10A···10N20A···20P
order122222444444558···810···1020···20
size1111221111222210···102···22···2

52 irreducible representations

dim111111222222
type+++++-+-
imageC1C2C2C2C4C4D5M4(2)Dic5D10Dic5C4.Dic5
kernelC2×C4.Dic5C2×C52C8C4.Dic5C22×C20C2×C20C22×C10C22×C4C10C2×C4C2×C4C23C2
# reps1241622466216

Matrix representation of C2×C4.Dic5 in GL4(𝔽41) generated by

40000
04000
00400
00040
,
40000
04000
00933
00032
,
7100
40000
00515
0008
,
9000
193200
003319
00238
G:=sub<GL(4,GF(41))| [40,0,0,0,0,40,0,0,0,0,40,0,0,0,0,40],[40,0,0,0,0,40,0,0,0,0,9,0,0,0,33,32],[7,40,0,0,1,0,0,0,0,0,5,0,0,0,15,8],[9,19,0,0,0,32,0,0,0,0,33,23,0,0,19,8] >;

C2×C4.Dic5 in GAP, Magma, Sage, TeX

C_2\times C_4.{\rm Dic}_5
% in TeX

G:=Group("C2xC4.Dic5");
// GroupNames label

G:=SmallGroup(160,142);
// by ID

G=gap.SmallGroup(160,142);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-5,48,362,69,4613]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^4=1,c^10=b^2,d^2=c^5,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=b^-1,d*c*d^-1=c^9>;
// generators/relations

׿
×
𝔽