Extensions 1→N→G→Q→1 with N=C2 and Q=C2×C4×Dic5

Direct product G=N×Q with N=C2 and Q=C2×C4×Dic5
dρLabelID
C22×C4×Dic5320C2^2xC4xDic5320,1454


Non-split extensions G=N.Q with N=C2 and Q=C2×C4×Dic5
extensionφ:Q→Aut NdρLabelID
C2.1(C2×C4×Dic5) = C2×C4×C52C8central extension (φ=1)320C2.1(C2xC4xDic5)320,547
C2.2(C2×C4×Dic5) = C42×Dic5central extension (φ=1)320C2.2(C2xC4xDic5)320,557
C2.3(C2×C4×Dic5) = C2×C8×Dic5central extension (φ=1)320C2.3(C2xC4xDic5)320,725
C2.4(C2×C4×Dic5) = C2×C42.D5central stem extension (φ=1)320C2.4(C2xC4xDic5)320,548
C2.5(C2×C4×Dic5) = C4×C4.Dic5central stem extension (φ=1)160C2.5(C2xC4xDic5)320,549
C2.6(C2×C4×Dic5) = C424Dic5central stem extension (φ=1)320C2.6(C2xC4xDic5)320,559
C2.7(C2×C4×Dic5) = C4×C4⋊Dic5central stem extension (φ=1)320C2.7(C2xC4xDic5)320,561
C2.8(C2×C4×Dic5) = C22⋊C4×Dic5central stem extension (φ=1)160C2.8(C2xC4xDic5)320,568
C2.9(C2×C4×Dic5) = C4⋊C4×Dic5central stem extension (φ=1)320C2.9(C2xC4xDic5)320,602
C2.10(C2×C4×Dic5) = C20.35C42central stem extension (φ=1)160C2.10(C2xC4xDic5)320,624
C2.11(C2×C4×Dic5) = C2×C408C4central stem extension (φ=1)320C2.11(C2xC4xDic5)320,727
C2.12(C2×C4×Dic5) = C20.42C42central stem extension (φ=1)160C2.12(C2xC4xDic5)320,728
C2.13(C2×C4×Dic5) = M4(2)×Dic5central stem extension (φ=1)160C2.13(C2xC4xDic5)320,744
C2.14(C2×C4×Dic5) = C20.37C42central stem extension (φ=1)160C2.14(C2xC4xDic5)320,749
C2.15(C2×C4×Dic5) = C2×C10.10C42central stem extension (φ=1)320C2.15(C2xC4xDic5)320,835
C2.16(C2×C4×Dic5) = C4×C23.D5central stem extension (φ=1)160C2.16(C2xC4xDic5)320,836

׿
×
𝔽