direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary
Aliases: C2×C4×Dic5, C10⋊2C42, C23.28D10, C5⋊3(C2×C42), C20⋊11(C2×C4), (C2×C20)⋊12C4, (C2×C4).101D10, (C22×C4).10D5, C22.15(C4×D5), (C2×C10).40C23, (C22×C20).13C2, C10.35(C22×C4), C2.2(C22×Dic5), (C2×C20).113C22, C22.13(C2×Dic5), C22.19(C22×D5), (C22×C10).32C22, (C2×Dic5).64C22, (C22×Dic5).10C2, C2.3(C2×C4×D5), (C2×C10).53(C2×C4), SmallGroup(160,143)
Series: Derived ►Chief ►Lower central ►Upper central
C5 — C2×C4×Dic5 |
Generators and relations for C2×C4×Dic5
G = < a,b,c,d | a2=b4=c10=1, d2=c5, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c-1 >
Subgroups: 216 in 108 conjugacy classes, 81 normal (11 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C2×C4, C2×C4, C23, C10, C10, C42, C22×C4, C22×C4, Dic5, C20, C2×C10, C2×C10, C2×C42, C2×Dic5, C2×C20, C22×C10, C4×Dic5, C22×Dic5, C22×C20, C2×C4×Dic5
Quotients: C1, C2, C4, C22, C2×C4, C23, D5, C42, C22×C4, Dic5, D10, C2×C42, C4×D5, C2×Dic5, C22×D5, C4×Dic5, C2×C4×D5, C22×Dic5, C2×C4×Dic5
(1 68)(2 69)(3 70)(4 61)(5 62)(6 63)(7 64)(8 65)(9 66)(10 67)(11 127)(12 128)(13 129)(14 130)(15 121)(16 122)(17 123)(18 124)(19 125)(20 126)(21 53)(22 54)(23 55)(24 56)(25 57)(26 58)(27 59)(28 60)(29 51)(30 52)(31 76)(32 77)(33 78)(34 79)(35 80)(36 71)(37 72)(38 73)(39 74)(40 75)(41 83)(42 84)(43 85)(44 86)(45 87)(46 88)(47 89)(48 90)(49 81)(50 82)(91 136)(92 137)(93 138)(94 139)(95 140)(96 131)(97 132)(98 133)(99 134)(100 135)(101 146)(102 147)(103 148)(104 149)(105 150)(106 141)(107 142)(108 143)(109 144)(110 145)(111 156)(112 157)(113 158)(114 159)(115 160)(116 151)(117 152)(118 153)(119 154)(120 155)
(1 43 27 34)(2 44 28 35)(3 45 29 36)(4 46 30 37)(5 47 21 38)(6 48 22 39)(7 49 23 40)(8 50 24 31)(9 41 25 32)(10 42 26 33)(11 136 156 142)(12 137 157 143)(13 138 158 144)(14 139 159 145)(15 140 160 146)(16 131 151 147)(17 132 152 148)(18 133 153 149)(19 134 154 150)(20 135 155 141)(51 71 70 87)(52 72 61 88)(53 73 62 89)(54 74 63 90)(55 75 64 81)(56 76 65 82)(57 77 66 83)(58 78 67 84)(59 79 68 85)(60 80 69 86)(91 111 107 127)(92 112 108 128)(93 113 109 129)(94 114 110 130)(95 115 101 121)(96 116 102 122)(97 117 103 123)(98 118 104 124)(99 119 105 125)(100 120 106 126)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 151 6 156)(2 160 7 155)(3 159 8 154)(4 158 9 153)(5 157 10 152)(11 27 16 22)(12 26 17 21)(13 25 18 30)(14 24 19 29)(15 23 20 28)(31 134 36 139)(32 133 37 138)(33 132 38 137)(34 131 39 136)(35 140 40 135)(41 149 46 144)(42 148 47 143)(43 147 48 142)(44 146 49 141)(45 145 50 150)(51 130 56 125)(52 129 57 124)(53 128 58 123)(54 127 59 122)(55 126 60 121)(61 113 66 118)(62 112 67 117)(63 111 68 116)(64 120 69 115)(65 119 70 114)(71 94 76 99)(72 93 77 98)(73 92 78 97)(74 91 79 96)(75 100 80 95)(81 106 86 101)(82 105 87 110)(83 104 88 109)(84 103 89 108)(85 102 90 107)
G:=sub<Sym(160)| (1,68)(2,69)(3,70)(4,61)(5,62)(6,63)(7,64)(8,65)(9,66)(10,67)(11,127)(12,128)(13,129)(14,130)(15,121)(16,122)(17,123)(18,124)(19,125)(20,126)(21,53)(22,54)(23,55)(24,56)(25,57)(26,58)(27,59)(28,60)(29,51)(30,52)(31,76)(32,77)(33,78)(34,79)(35,80)(36,71)(37,72)(38,73)(39,74)(40,75)(41,83)(42,84)(43,85)(44,86)(45,87)(46,88)(47,89)(48,90)(49,81)(50,82)(91,136)(92,137)(93,138)(94,139)(95,140)(96,131)(97,132)(98,133)(99,134)(100,135)(101,146)(102,147)(103,148)(104,149)(105,150)(106,141)(107,142)(108,143)(109,144)(110,145)(111,156)(112,157)(113,158)(114,159)(115,160)(116,151)(117,152)(118,153)(119,154)(120,155), (1,43,27,34)(2,44,28,35)(3,45,29,36)(4,46,30,37)(5,47,21,38)(6,48,22,39)(7,49,23,40)(8,50,24,31)(9,41,25,32)(10,42,26,33)(11,136,156,142)(12,137,157,143)(13,138,158,144)(14,139,159,145)(15,140,160,146)(16,131,151,147)(17,132,152,148)(18,133,153,149)(19,134,154,150)(20,135,155,141)(51,71,70,87)(52,72,61,88)(53,73,62,89)(54,74,63,90)(55,75,64,81)(56,76,65,82)(57,77,66,83)(58,78,67,84)(59,79,68,85)(60,80,69,86)(91,111,107,127)(92,112,108,128)(93,113,109,129)(94,114,110,130)(95,115,101,121)(96,116,102,122)(97,117,103,123)(98,118,104,124)(99,119,105,125)(100,120,106,126), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,151,6,156)(2,160,7,155)(3,159,8,154)(4,158,9,153)(5,157,10,152)(11,27,16,22)(12,26,17,21)(13,25,18,30)(14,24,19,29)(15,23,20,28)(31,134,36,139)(32,133,37,138)(33,132,38,137)(34,131,39,136)(35,140,40,135)(41,149,46,144)(42,148,47,143)(43,147,48,142)(44,146,49,141)(45,145,50,150)(51,130,56,125)(52,129,57,124)(53,128,58,123)(54,127,59,122)(55,126,60,121)(61,113,66,118)(62,112,67,117)(63,111,68,116)(64,120,69,115)(65,119,70,114)(71,94,76,99)(72,93,77,98)(73,92,78,97)(74,91,79,96)(75,100,80,95)(81,106,86,101)(82,105,87,110)(83,104,88,109)(84,103,89,108)(85,102,90,107)>;
G:=Group( (1,68)(2,69)(3,70)(4,61)(5,62)(6,63)(7,64)(8,65)(9,66)(10,67)(11,127)(12,128)(13,129)(14,130)(15,121)(16,122)(17,123)(18,124)(19,125)(20,126)(21,53)(22,54)(23,55)(24,56)(25,57)(26,58)(27,59)(28,60)(29,51)(30,52)(31,76)(32,77)(33,78)(34,79)(35,80)(36,71)(37,72)(38,73)(39,74)(40,75)(41,83)(42,84)(43,85)(44,86)(45,87)(46,88)(47,89)(48,90)(49,81)(50,82)(91,136)(92,137)(93,138)(94,139)(95,140)(96,131)(97,132)(98,133)(99,134)(100,135)(101,146)(102,147)(103,148)(104,149)(105,150)(106,141)(107,142)(108,143)(109,144)(110,145)(111,156)(112,157)(113,158)(114,159)(115,160)(116,151)(117,152)(118,153)(119,154)(120,155), (1,43,27,34)(2,44,28,35)(3,45,29,36)(4,46,30,37)(5,47,21,38)(6,48,22,39)(7,49,23,40)(8,50,24,31)(9,41,25,32)(10,42,26,33)(11,136,156,142)(12,137,157,143)(13,138,158,144)(14,139,159,145)(15,140,160,146)(16,131,151,147)(17,132,152,148)(18,133,153,149)(19,134,154,150)(20,135,155,141)(51,71,70,87)(52,72,61,88)(53,73,62,89)(54,74,63,90)(55,75,64,81)(56,76,65,82)(57,77,66,83)(58,78,67,84)(59,79,68,85)(60,80,69,86)(91,111,107,127)(92,112,108,128)(93,113,109,129)(94,114,110,130)(95,115,101,121)(96,116,102,122)(97,117,103,123)(98,118,104,124)(99,119,105,125)(100,120,106,126), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,151,6,156)(2,160,7,155)(3,159,8,154)(4,158,9,153)(5,157,10,152)(11,27,16,22)(12,26,17,21)(13,25,18,30)(14,24,19,29)(15,23,20,28)(31,134,36,139)(32,133,37,138)(33,132,38,137)(34,131,39,136)(35,140,40,135)(41,149,46,144)(42,148,47,143)(43,147,48,142)(44,146,49,141)(45,145,50,150)(51,130,56,125)(52,129,57,124)(53,128,58,123)(54,127,59,122)(55,126,60,121)(61,113,66,118)(62,112,67,117)(63,111,68,116)(64,120,69,115)(65,119,70,114)(71,94,76,99)(72,93,77,98)(73,92,78,97)(74,91,79,96)(75,100,80,95)(81,106,86,101)(82,105,87,110)(83,104,88,109)(84,103,89,108)(85,102,90,107) );
G=PermutationGroup([[(1,68),(2,69),(3,70),(4,61),(5,62),(6,63),(7,64),(8,65),(9,66),(10,67),(11,127),(12,128),(13,129),(14,130),(15,121),(16,122),(17,123),(18,124),(19,125),(20,126),(21,53),(22,54),(23,55),(24,56),(25,57),(26,58),(27,59),(28,60),(29,51),(30,52),(31,76),(32,77),(33,78),(34,79),(35,80),(36,71),(37,72),(38,73),(39,74),(40,75),(41,83),(42,84),(43,85),(44,86),(45,87),(46,88),(47,89),(48,90),(49,81),(50,82),(91,136),(92,137),(93,138),(94,139),(95,140),(96,131),(97,132),(98,133),(99,134),(100,135),(101,146),(102,147),(103,148),(104,149),(105,150),(106,141),(107,142),(108,143),(109,144),(110,145),(111,156),(112,157),(113,158),(114,159),(115,160),(116,151),(117,152),(118,153),(119,154),(120,155)], [(1,43,27,34),(2,44,28,35),(3,45,29,36),(4,46,30,37),(5,47,21,38),(6,48,22,39),(7,49,23,40),(8,50,24,31),(9,41,25,32),(10,42,26,33),(11,136,156,142),(12,137,157,143),(13,138,158,144),(14,139,159,145),(15,140,160,146),(16,131,151,147),(17,132,152,148),(18,133,153,149),(19,134,154,150),(20,135,155,141),(51,71,70,87),(52,72,61,88),(53,73,62,89),(54,74,63,90),(55,75,64,81),(56,76,65,82),(57,77,66,83),(58,78,67,84),(59,79,68,85),(60,80,69,86),(91,111,107,127),(92,112,108,128),(93,113,109,129),(94,114,110,130),(95,115,101,121),(96,116,102,122),(97,117,103,123),(98,118,104,124),(99,119,105,125),(100,120,106,126)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,151,6,156),(2,160,7,155),(3,159,8,154),(4,158,9,153),(5,157,10,152),(11,27,16,22),(12,26,17,21),(13,25,18,30),(14,24,19,29),(15,23,20,28),(31,134,36,139),(32,133,37,138),(33,132,38,137),(34,131,39,136),(35,140,40,135),(41,149,46,144),(42,148,47,143),(43,147,48,142),(44,146,49,141),(45,145,50,150),(51,130,56,125),(52,129,57,124),(53,128,58,123),(54,127,59,122),(55,126,60,121),(61,113,66,118),(62,112,67,117),(63,111,68,116),(64,120,69,115),(65,119,70,114),(71,94,76,99),(72,93,77,98),(73,92,78,97),(74,91,79,96),(75,100,80,95),(81,106,86,101),(82,105,87,110),(83,104,88,109),(84,103,89,108),(85,102,90,107)]])
C2×C4×Dic5 is a maximal subgroup of
C20.32C42 (C2×C40)⋊15C4 C20.33C42 C10.(C4⋊C8) (C2×C20)⋊Q8 C10.49(C4×D4) Dic5.15C42 Dic5⋊2C42 C5⋊2(C42⋊8C4) C5⋊2(C42⋊5C4) C10.51(C4×D4) C2.(C4×D20) C4⋊Dic5⋊15C4 C10.52(C4×D4) D10⋊2C42 C10.54(C4×D4) C10.55(C4×D4) Dic5.14M4(2) Dic5.9M4(2) C42⋊4Dic5 C24.3D10 C24.4D10 C24.8D10 C24.13D10 C10.96(C4×D4) C20⋊4(C4⋊C4) (C2×Dic5)⋊6Q8 C20⋊5(C4⋊C4) C20.48(C4⋊C4) C10.97(C4×D4) C4⋊C4⋊5Dic5 C20⋊6(C4⋊C4) (C2×D20)⋊22C4 C10.90(C4×D4) Dic5⋊5M4(2) C24.19D10 (Q8×C10)⋊17C4 Dic5.12M4(2) C20.34M4(2) Dic5.13M4(2) C20⋊8M4(2) C20.30M4(2) D5×C2×C42 C42.88D10 C42.188D10 C42.102D10 C20⋊(C4○D4) C4⋊C4.178D10 (Q8×Dic5)⋊C2 C22⋊Q8⋊25D5 C4⋊C4.197D10 (C2×C20)⋊17D4
C2×C4×Dic5 is a maximal quotient of
C42⋊4Dic5 C20.35C42 C20.42C42 C20.37C42
64 conjugacy classes
class | 1 | 2A | ··· | 2G | 4A | ··· | 4H | 4I | ··· | 4X | 5A | 5B | 10A | ··· | 10N | 20A | ··· | 20P |
order | 1 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 | 5 | 5 | 10 | ··· | 10 | 20 | ··· | 20 |
size | 1 | 1 | ··· | 1 | 1 | ··· | 1 | 5 | ··· | 5 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
64 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | - | + | + | |||
image | C1 | C2 | C2 | C2 | C4 | C4 | D5 | Dic5 | D10 | D10 | C4×D5 |
kernel | C2×C4×Dic5 | C4×Dic5 | C22×Dic5 | C22×C20 | C2×Dic5 | C2×C20 | C22×C4 | C2×C4 | C2×C4 | C23 | C22 |
# reps | 1 | 4 | 2 | 1 | 16 | 8 | 2 | 8 | 4 | 2 | 16 |
Matrix representation of C2×C4×Dic5 ►in GL4(𝔽41) generated by
1 | 0 | 0 | 0 |
0 | 40 | 0 | 0 |
0 | 0 | 40 | 0 |
0 | 0 | 0 | 40 |
9 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 9 | 0 |
0 | 0 | 0 | 9 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 1 | 40 |
0 | 0 | 36 | 6 |
40 | 0 | 0 | 0 |
0 | 40 | 0 | 0 |
0 | 0 | 28 | 32 |
0 | 0 | 28 | 13 |
G:=sub<GL(4,GF(41))| [1,0,0,0,0,40,0,0,0,0,40,0,0,0,0,40],[9,0,0,0,0,1,0,0,0,0,9,0,0,0,0,9],[1,0,0,0,0,1,0,0,0,0,1,36,0,0,40,6],[40,0,0,0,0,40,0,0,0,0,28,28,0,0,32,13] >;
C2×C4×Dic5 in GAP, Magma, Sage, TeX
C_2\times C_4\times {\rm Dic}_5
% in TeX
G:=Group("C2xC4xDic5");
// GroupNames label
G:=SmallGroup(160,143);
// by ID
G=gap.SmallGroup(160,143);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-5,48,86,4613]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^4=c^10=1,d^2=c^5,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations