# Extensions 1→N→G→Q→1 with N=C22×Q8 and Q=C10

Direct product G=N×Q with N=C22×Q8 and Q=C10
dρLabelID
Q8×C22×C10320Q8xC2^2xC10320,1630

Semidirect products G=N:Q with N=C22×Q8 and Q=C10
extensionφ:Q→Out NdρLabelID
(C22×Q8)⋊1C10 = C5×C23⋊Q8φ: C10/C5C2 ⊆ Out C22×Q8160(C2^2xQ8):1C10320,894
(C22×Q8)⋊2C10 = C5×Q8⋊D4φ: C10/C5C2 ⊆ Out C22×Q8160(C2^2xQ8):2C10320,949
(C22×Q8)⋊3C10 = C10×C22⋊Q8φ: C10/C5C2 ⊆ Out C22×Q8160(C2^2xQ8):3C10320,1525
(C22×Q8)⋊4C10 = C10×C4.4D4φ: C10/C5C2 ⊆ Out C22×Q8160(C2^2xQ8):4C10320,1528
(C22×Q8)⋊5C10 = C5×C23.38C23φ: C10/C5C2 ⊆ Out C22×Q8160(C2^2xQ8):5C10320,1538
(C22×Q8)⋊6C10 = C5×Q85D4φ: C10/C5C2 ⊆ Out C22×Q8160(C2^2xQ8):6C10320,1550
(C22×Q8)⋊7C10 = C5×D4×Q8φ: C10/C5C2 ⊆ Out C22×Q8160(C2^2xQ8):7C10320,1551
(C22×Q8)⋊8C10 = SD16×C2×C10φ: C10/C5C2 ⊆ Out C22×Q8160(C2^2xQ8):8C10320,1572
(C22×Q8)⋊9C10 = C10×C8.C22φ: C10/C5C2 ⊆ Out C22×Q8160(C2^2xQ8):9C10320,1576
(C22×Q8)⋊10C10 = C10×2- 1+4φ: C10/C5C2 ⊆ Out C22×Q8160(C2^2xQ8):10C10320,1633
(C22×Q8)⋊11C10 = C4○D4×C2×C10φ: trivial image160(C2^2xQ8):11C10320,1631

Non-split extensions G=N.Q with N=C22×Q8 and Q=C10
extensionφ:Q→Out NdρLabelID
(C22×Q8).1C10 = C5×C23.67C23φ: C10/C5C2 ⊆ Out C22×Q8320(C2^2xQ8).1C10320,892
(C22×Q8).2C10 = C5×C23.78C23φ: C10/C5C2 ⊆ Out C22×Q8320(C2^2xQ8).2C10320,896
(C22×Q8).3C10 = C10×C4.10D4φ: C10/C5C2 ⊆ Out C22×Q8160(C2^2xQ8).3C10320,913
(C22×Q8).4C10 = C10×Q8⋊C4φ: C10/C5C2 ⊆ Out C22×Q8320(C2^2xQ8).4C10320,916
(C22×Q8).5C10 = C5×C23.38D4φ: C10/C5C2 ⊆ Out C22×Q8160(C2^2xQ8).5C10320,920
(C22×Q8).6C10 = C5×C22⋊Q16φ: C10/C5C2 ⊆ Out C22×Q8160(C2^2xQ8).6C10320,952
(C22×Q8).7C10 = C5×C23.32C23φ: C10/C5C2 ⊆ Out C22×Q8160(C2^2xQ8).7C10320,1521
(C22×Q8).8C10 = C10×C4⋊Q8φ: C10/C5C2 ⊆ Out C22×Q8320(C2^2xQ8).8C10320,1533
(C22×Q8).9C10 = Q16×C2×C10φ: C10/C5C2 ⊆ Out C22×Q8320(C2^2xQ8).9C10320,1573
(C22×Q8).10C10 = Q8×C2×C20φ: trivial image320(C2^2xQ8).10C10320,1518

׿
×
𝔽