Extensions 1→N→G→Q→1 with N=D5xC16 and Q=C2

Direct product G=NxQ with N=D5xC16 and Q=C2
dρLabelID
D5xC2xC16160D5xC2xC16320,526

Semidirect products G=N:Q with N=D5xC16 and Q=C2
extensionφ:Q→Out NdρLabelID
(D5xC16):1C2 = D5xD16φ: C2/C1C2 ⊆ Out D5xC16804+(D5xC16):1C2320,537
(D5xC16):2C2 = D16:3D5φ: C2/C1C2 ⊆ Out D5xC161604-(D5xC16):2C2320,539
(D5xC16):3C2 = D80:5C2φ: C2/C1C2 ⊆ Out D5xC161604+(D5xC16):3C2320,546
(D5xC16):4C2 = D5xSD32φ: C2/C1C2 ⊆ Out D5xC16804(D5xC16):4C2320,540
(D5xC16):5C2 = SD32:3D5φ: C2/C1C2 ⊆ Out D5xC161604(D5xC16):5C2320,543
(D5xC16):6C2 = D20.6C8φ: C2/C1C2 ⊆ Out D5xC161602(D5xC16):6C2320,528
(D5xC16):7C2 = D5xM5(2)φ: C2/C1C2 ⊆ Out D5xC16804(D5xC16):7C2320,533
(D5xC16):8C2 = D20.5C8φ: C2/C1C2 ⊆ Out D5xC161604(D5xC16):8C2320,534

Non-split extensions G=N.Q with N=D5xC16 and Q=C2
extensionφ:Q→Out NdρLabelID
(D5xC16).1C2 = D5xQ32φ: C2/C1C2 ⊆ Out D5xC161604-(D5xC16).1C2320,544
(D5xC16).2C2 = C80:2C4φ: C2/C1C2 ⊆ Out D5xC16804(D5xC16).2C2320,187
(D5xC16).3C2 = C16.F5φ: C2/C1C2 ⊆ Out D5xC161604(D5xC16).3C2320,189
(D5xC16).4C2 = C32:D5φ: C2/C1C2 ⊆ Out D5xC161602(D5xC16).4C2320,5
(D5xC16).5C2 = C80:3C4φ: C2/C1C2 ⊆ Out D5xC16804(D5xC16).5C2320,188
(D5xC16).6C2 = C80.2C4φ: C2/C1C2 ⊆ Out D5xC161604(D5xC16).6C2320,190
(D5xC16).7C2 = D5:C32φ: C2/C1C2 ⊆ Out D5xC161604(D5xC16).7C2320,179
(D5xC16).8C2 = C80.C4φ: C2/C1C2 ⊆ Out D5xC161604(D5xC16).8C2320,180
(D5xC16).9C2 = C16xF5φ: C2/C1C2 ⊆ Out D5xC16804(D5xC16).9C2320,181
(D5xC16).10C2 = C16:7F5φ: C2/C1C2 ⊆ Out D5xC16804(D5xC16).10C2320,182
(D5xC16).11C2 = D5xC32φ: trivial image1602(D5xC16).11C2320,4

׿
x
:
Z
F
o
wr
Q
<