Copied to
clipboard

G = D805C2order 320 = 26·5

5th semidirect product of D80 and C2 acting faithfully

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D805C2, Q323D5, D10.7D8, C16.10D10, C80.8C22, Q16.5D10, C40.22C23, Dic5.26D8, D40.5C22, (D5×C16)⋊3C2, C54(C4○D16), (C5×Q32)⋊3C2, C4.10(D4×D5), C2.25(D5×D8), (C4×D5).62D4, C10.41(C2×D8), C20.16(C2×D4), C5⋊SD324C2, C52C8.28D4, Q8.D105C2, C8.28(C22×D5), C52C16.8C22, (C8×D5).43C22, (C5×Q16).6C22, SmallGroup(320,546)

Series: Derived Chief Lower central Upper central

C1C40 — D805C2
C1C5C10C20C40C8×D5Q8.D10 — D805C2
C5C10C20C40 — D805C2
C1C2C4C8Q32

Generators and relations for D805C2
 G = < a,b,c | a80=b2=c2=1, bab=a-1, cac=a49, cbc=a8b >

Subgroups: 454 in 84 conjugacy classes, 31 normal (21 characteristic)
C1, C2, C2, C4, C4, C22, C5, C8, C8, C2×C4, D4, Q8, D5, C10, C16, C16, C2×C8, D8, SD16, Q16, C4○D4, Dic5, C20, C20, D10, D10, C2×C16, D16, SD32, Q32, C4○D8, C52C8, C40, C4×D5, C4×D5, D20, C5×Q8, C4○D16, C52C16, C80, C8×D5, D40, Q8⋊D5, C5×Q16, Q82D5, D5×C16, D80, C5⋊SD32, C5×Q32, Q8.D10, D805C2
Quotients: C1, C2, C22, D4, C23, D5, D8, C2×D4, D10, C2×D8, C22×D5, C4○D16, D4×D5, D5×D8, D805C2

Smallest permutation representation of D805C2
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 80)(2 79)(3 78)(4 77)(5 76)(6 75)(7 74)(8 73)(9 72)(10 71)(11 70)(12 69)(13 68)(14 67)(15 66)(16 65)(17 64)(18 63)(19 62)(20 61)(21 60)(22 59)(23 58)(24 57)(25 56)(26 55)(27 54)(28 53)(29 52)(30 51)(31 50)(32 49)(33 48)(34 47)(35 46)(36 45)(37 44)(38 43)(39 42)(40 41)(81 96)(82 95)(83 94)(84 93)(85 92)(86 91)(87 90)(88 89)(97 160)(98 159)(99 158)(100 157)(101 156)(102 155)(103 154)(104 153)(105 152)(106 151)(107 150)(108 149)(109 148)(110 147)(111 146)(112 145)(113 144)(114 143)(115 142)(116 141)(117 140)(118 139)(119 138)(120 137)(121 136)(122 135)(123 134)(124 133)(125 132)(126 131)(127 130)(128 129)
(1 109)(2 158)(3 127)(4 96)(5 145)(6 114)(7 83)(8 132)(9 101)(10 150)(11 119)(12 88)(13 137)(14 106)(15 155)(16 124)(17 93)(18 142)(19 111)(20 160)(21 129)(22 98)(23 147)(24 116)(25 85)(26 134)(27 103)(28 152)(29 121)(30 90)(31 139)(32 108)(33 157)(34 126)(35 95)(36 144)(37 113)(38 82)(39 131)(40 100)(41 149)(42 118)(43 87)(44 136)(45 105)(46 154)(47 123)(48 92)(49 141)(50 110)(51 159)(52 128)(53 97)(54 146)(55 115)(56 84)(57 133)(58 102)(59 151)(60 120)(61 89)(62 138)(63 107)(64 156)(65 125)(66 94)(67 143)(68 112)(69 81)(70 130)(71 99)(72 148)(73 117)(74 86)(75 135)(76 104)(77 153)(78 122)(79 91)(80 140)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,80)(2,79)(3,78)(4,77)(5,76)(6,75)(7,74)(8,73)(9,72)(10,71)(11,70)(12,69)(13,68)(14,67)(15,66)(16,65)(17,64)(18,63)(19,62)(20,61)(21,60)(22,59)(23,58)(24,57)(25,56)(26,55)(27,54)(28,53)(29,52)(30,51)(31,50)(32,49)(33,48)(34,47)(35,46)(36,45)(37,44)(38,43)(39,42)(40,41)(81,96)(82,95)(83,94)(84,93)(85,92)(86,91)(87,90)(88,89)(97,160)(98,159)(99,158)(100,157)(101,156)(102,155)(103,154)(104,153)(105,152)(106,151)(107,150)(108,149)(109,148)(110,147)(111,146)(112,145)(113,144)(114,143)(115,142)(116,141)(117,140)(118,139)(119,138)(120,137)(121,136)(122,135)(123,134)(124,133)(125,132)(126,131)(127,130)(128,129), (1,109)(2,158)(3,127)(4,96)(5,145)(6,114)(7,83)(8,132)(9,101)(10,150)(11,119)(12,88)(13,137)(14,106)(15,155)(16,124)(17,93)(18,142)(19,111)(20,160)(21,129)(22,98)(23,147)(24,116)(25,85)(26,134)(27,103)(28,152)(29,121)(30,90)(31,139)(32,108)(33,157)(34,126)(35,95)(36,144)(37,113)(38,82)(39,131)(40,100)(41,149)(42,118)(43,87)(44,136)(45,105)(46,154)(47,123)(48,92)(49,141)(50,110)(51,159)(52,128)(53,97)(54,146)(55,115)(56,84)(57,133)(58,102)(59,151)(60,120)(61,89)(62,138)(63,107)(64,156)(65,125)(66,94)(67,143)(68,112)(69,81)(70,130)(71,99)(72,148)(73,117)(74,86)(75,135)(76,104)(77,153)(78,122)(79,91)(80,140)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,80)(2,79)(3,78)(4,77)(5,76)(6,75)(7,74)(8,73)(9,72)(10,71)(11,70)(12,69)(13,68)(14,67)(15,66)(16,65)(17,64)(18,63)(19,62)(20,61)(21,60)(22,59)(23,58)(24,57)(25,56)(26,55)(27,54)(28,53)(29,52)(30,51)(31,50)(32,49)(33,48)(34,47)(35,46)(36,45)(37,44)(38,43)(39,42)(40,41)(81,96)(82,95)(83,94)(84,93)(85,92)(86,91)(87,90)(88,89)(97,160)(98,159)(99,158)(100,157)(101,156)(102,155)(103,154)(104,153)(105,152)(106,151)(107,150)(108,149)(109,148)(110,147)(111,146)(112,145)(113,144)(114,143)(115,142)(116,141)(117,140)(118,139)(119,138)(120,137)(121,136)(122,135)(123,134)(124,133)(125,132)(126,131)(127,130)(128,129), (1,109)(2,158)(3,127)(4,96)(5,145)(6,114)(7,83)(8,132)(9,101)(10,150)(11,119)(12,88)(13,137)(14,106)(15,155)(16,124)(17,93)(18,142)(19,111)(20,160)(21,129)(22,98)(23,147)(24,116)(25,85)(26,134)(27,103)(28,152)(29,121)(30,90)(31,139)(32,108)(33,157)(34,126)(35,95)(36,144)(37,113)(38,82)(39,131)(40,100)(41,149)(42,118)(43,87)(44,136)(45,105)(46,154)(47,123)(48,92)(49,141)(50,110)(51,159)(52,128)(53,97)(54,146)(55,115)(56,84)(57,133)(58,102)(59,151)(60,120)(61,89)(62,138)(63,107)(64,156)(65,125)(66,94)(67,143)(68,112)(69,81)(70,130)(71,99)(72,148)(73,117)(74,86)(75,135)(76,104)(77,153)(78,122)(79,91)(80,140) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,80),(2,79),(3,78),(4,77),(5,76),(6,75),(7,74),(8,73),(9,72),(10,71),(11,70),(12,69),(13,68),(14,67),(15,66),(16,65),(17,64),(18,63),(19,62),(20,61),(21,60),(22,59),(23,58),(24,57),(25,56),(26,55),(27,54),(28,53),(29,52),(30,51),(31,50),(32,49),(33,48),(34,47),(35,46),(36,45),(37,44),(38,43),(39,42),(40,41),(81,96),(82,95),(83,94),(84,93),(85,92),(86,91),(87,90),(88,89),(97,160),(98,159),(99,158),(100,157),(101,156),(102,155),(103,154),(104,153),(105,152),(106,151),(107,150),(108,149),(109,148),(110,147),(111,146),(112,145),(113,144),(114,143),(115,142),(116,141),(117,140),(118,139),(119,138),(120,137),(121,136),(122,135),(123,134),(124,133),(125,132),(126,131),(127,130),(128,129)], [(1,109),(2,158),(3,127),(4,96),(5,145),(6,114),(7,83),(8,132),(9,101),(10,150),(11,119),(12,88),(13,137),(14,106),(15,155),(16,124),(17,93),(18,142),(19,111),(20,160),(21,129),(22,98),(23,147),(24,116),(25,85),(26,134),(27,103),(28,152),(29,121),(30,90),(31,139),(32,108),(33,157),(34,126),(35,95),(36,144),(37,113),(38,82),(39,131),(40,100),(41,149),(42,118),(43,87),(44,136),(45,105),(46,154),(47,123),(48,92),(49,141),(50,110),(51,159),(52,128),(53,97),(54,146),(55,115),(56,84),(57,133),(58,102),(59,151),(60,120),(61,89),(62,138),(63,107),(64,156),(65,125),(66,94),(67,143),(68,112),(69,81),(70,130),(71,99),(72,148),(73,117),(74,86),(75,135),(76,104),(77,153),(78,122),(79,91),(80,140)]])

44 conjugacy classes

class 1 2A2B2C2D4A4B4C4D4E5A5B8A8B8C8D10A10B16A16B16C16D16E16F16G16H20A20B20C20D20E20F40A40B40C40D80A···80H
order1222244444558888101016161616161616162020202020204040404080···80
size11104040255882222101022222210101010441616161644444···4

44 irreducible representations

dim11111122222222444
type++++++++++++++++
imageC1C2C2C2C2C2D4D4D5D8D8D10D10C4○D16D4×D5D5×D8D805C2
kernelD805C2D5×C16D80C5⋊SD32C5×Q32Q8.D10C52C8C4×D5Q32Dic5D10C16Q16C5C4C2C1
# reps11121211222248248

Matrix representation of D805C2 in GL4(𝔽241) generated by

18924000
1000
0018371
0085112
,
18924000
525200
0018371
0021458
,
1000
18924000
00177113
006464
G:=sub<GL(4,GF(241))| [189,1,0,0,240,0,0,0,0,0,183,85,0,0,71,112],[189,52,0,0,240,52,0,0,0,0,183,214,0,0,71,58],[1,189,0,0,0,240,0,0,0,0,177,64,0,0,113,64] >;

D805C2 in GAP, Magma, Sage, TeX

D_{80}\rtimes_5C_2
% in TeX

G:=Group("D80:5C2");
// GroupNames label

G:=SmallGroup(320,546);
// by ID

G=gap.SmallGroup(320,546);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,477,232,758,135,184,346,185,192,851,438,102,12550]);
// Polycyclic

G:=Group<a,b,c|a^80=b^2=c^2=1,b*a*b=a^-1,c*a*c=a^49,c*b*c=a^8*b>;
// generators/relations

׿
×
𝔽