Extensions 1→N→G→Q→1 with N=Q8 and Q=C4×D5

Direct product G=N×Q with N=Q8 and Q=C4×D5
dρLabelID
C4×Q8×D5160C4xQ8xD5320,1243

Semidirect products G=N:Q with N=Q8 and Q=C4×D5
extensionφ:Q→Out NdρLabelID
Q81(C4×D5) = Dic57SD16φ: C4×D5/Dic5C2 ⊆ Out Q8160Q8:1(C4xD5)320,415
Q82(C4×D5) = Q8⋊D56C4φ: C4×D5/Dic5C2 ⊆ Out Q8160Q8:2(C4xD5)320,444
Q83(C4×D5) = C4×Q8⋊D5φ: C4×D5/C20C2 ⊆ Out Q8160Q8:3(C4xD5)320,652
Q84(C4×D5) = C42.56D10φ: C4×D5/C20C2 ⊆ Out Q8160Q8:4(C4xD5)320,653
Q85(C4×D5) = D5×Q8⋊C4φ: C4×D5/D10C2 ⊆ Out Q8160Q8:5(C4xD5)320,428
Q86(C4×D5) = Q8⋊(C4×D5)φ: C4×D5/D10C2 ⊆ Out Q8160Q8:6(C4xD5)320,430
Q87(C4×D5) = D5×C4≀C2φ: C4×D5/D10C2 ⊆ Out Q8404Q8:7(C4xD5)320,447
Q88(C4×D5) = C4×Q82D5φ: trivial image160Q8:8(C4xD5)320,1245
Q89(C4×D5) = C42.126D10φ: trivial image160Q8:9(C4xD5)320,1246

Non-split extensions G=N.Q with N=Q8 and Q=C4×D5
extensionφ:Q→Out NdρLabelID
Q8.1(C4×D5) = C5⋊Q165C4φ: C4×D5/Dic5C2 ⊆ Out Q8320Q8.1(C4xD5)320,416
Q8.2(C4×D5) = Dic54Q16φ: C4×D5/Dic5C2 ⊆ Out Q8320Q8.2(C4xD5)320,417
Q8.3(C4×D5) = M4(2).22D10φ: C4×D5/Dic5C2 ⊆ Out Q8804Q8.3(C4xD5)320,450
Q8.4(C4×D5) = C42.196D10φ: C4×D5/Dic5C2 ⊆ Out Q8804Q8.4(C4xD5)320,451
Q8.5(C4×D5) = C4×C5⋊Q16φ: C4×D5/C20C2 ⊆ Out Q8320Q8.5(C4xD5)320,656
Q8.6(C4×D5) = C42.59D10φ: C4×D5/C20C2 ⊆ Out Q8320Q8.6(C4xD5)320,657
Q8.7(C4×D5) = C40.93D4φ: C4×D5/C20C2 ⊆ Out Q8804Q8.7(C4xD5)320,771
Q8.8(C4×D5) = C40.50D4φ: C4×D5/C20C2 ⊆ Out Q8804Q8.8(C4xD5)320,772
Q8.9(C4×D5) = (Q8×D5)⋊C4φ: C4×D5/D10C2 ⊆ Out Q8160Q8.9(C4xD5)320,429
Q8.10(C4×D5) = Q82D5⋊C4φ: C4×D5/D10C2 ⊆ Out Q8160Q8.10(C4xD5)320,431
Q8.11(C4×D5) = C42⋊D10φ: C4×D5/D10C2 ⊆ Out Q8804Q8.11(C4xD5)320,448
Q8.12(C4×D5) = C42.125D10φ: trivial image160Q8.12(C4xD5)320,1244
Q8.13(C4×D5) = D5×C8○D4φ: trivial image804Q8.13(C4xD5)320,1421
Q8.14(C4×D5) = C20.72C24φ: trivial image804Q8.14(C4xD5)320,1422

׿
×
𝔽