metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: Q8⋊D5⋊6C4, Q8⋊2(C4×D5), (Q8×Dic5)⋊2C2, C40⋊8C4⋊20C2, C10.67(C4×D4), C4⋊C4.155D10, Q8⋊C4⋊20D5, D20.18(C2×C4), (C2×C8).179D10, C22.80(D4×D5), D20⋊8C4.2C2, D20⋊5C4.9C2, C10.D8⋊13C2, C5⋊4(SD16⋊C4), C2.4(D40⋊C2), C20.51(C22×C4), (C2×Q8).111D10, C20.165(C4○D4), C4.58(D4⋊2D5), C10.65(C8⋊C22), (C2×C40).204C22, (C2×C20).257C23, C2.4(Q16⋊D5), (C2×Dic5).214D4, (C2×D20).71C22, (Q8×C10).40C22, C10.65(C8.C22), C4⋊Dic5.101C22, (C4×Dic5).30C22, C2.21(Dic5⋊4D4), C4.16(C2×C4×D5), C5⋊2C8⋊3(C2×C4), (C5×Q8)⋊13(C2×C4), (C2×Q8⋊D5).2C2, (C5×Q8⋊C4)⋊26C2, (C2×C10).270(C2×D4), (C5×C4⋊C4).58C22, (C2×C5⋊2C8).47C22, (C2×C4).364(C22×D5), SmallGroup(320,444)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C22 — C2×C4 — Q8⋊C4 |
Generators and relations for Q8⋊D5⋊6C4
G = < a,b,c,d,e | a4=c5=d2=e4=1, b2=a2, bab-1=dad=eae-1=a-1, ac=ca, bc=cb, dbd=a-1b, ebe-1=ab, dcd=c-1, ce=ec, de=ed >
Subgroups: 486 in 120 conjugacy classes, 49 normal (37 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C2×C4, C2×C4, D4, Q8, Q8, C23, D5, C10, C42, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, SD16, C22×C4, C2×D4, C2×Q8, Dic5, C20, C20, D10, C2×C10, C8⋊C4, D4⋊C4, Q8⋊C4, C2.D8, C4×D4, C4×Q8, C2×SD16, C5⋊2C8, C40, C4×D5, D20, D20, C2×Dic5, C2×Dic5, C2×C20, C2×C20, C5×Q8, C5×Q8, C22×D5, SD16⋊C4, C2×C5⋊2C8, C4×Dic5, C4×Dic5, C4⋊Dic5, C4⋊Dic5, D10⋊C4, Q8⋊D5, C5×C4⋊C4, C2×C40, C2×C4×D5, C2×D20, Q8×C10, C10.D8, C40⋊8C4, D20⋊5C4, C5×Q8⋊C4, D20⋊8C4, C2×Q8⋊D5, Q8×Dic5, Q8⋊D5⋊6C4
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, D5, C22×C4, C2×D4, C4○D4, D10, C4×D4, C8⋊C22, C8.C22, C4×D5, C22×D5, SD16⋊C4, C2×C4×D5, D4×D5, D4⋊2D5, Dic5⋊4D4, D40⋊C2, Q16⋊D5, Q8⋊D5⋊6C4
(1 16 6 11)(2 17 7 12)(3 18 8 13)(4 19 9 14)(5 20 10 15)(21 36 26 31)(22 37 27 32)(23 38 28 33)(24 39 29 34)(25 40 30 35)(41 51 46 56)(42 52 47 57)(43 53 48 58)(44 54 49 59)(45 55 50 60)(61 71 66 76)(62 72 67 77)(63 73 68 78)(64 74 69 79)(65 75 70 80)(81 91 86 96)(82 92 87 97)(83 93 88 98)(84 94 89 99)(85 95 90 100)(101 111 106 116)(102 112 107 117)(103 113 108 118)(104 114 109 119)(105 115 110 120)(121 136 126 131)(122 137 127 132)(123 138 128 133)(124 139 129 134)(125 140 130 135)(141 156 146 151)(142 157 147 152)(143 158 148 153)(144 159 149 154)(145 160 150 155)
(1 106 6 101)(2 107 7 102)(3 108 8 103)(4 109 9 104)(5 110 10 105)(11 116 16 111)(12 117 17 112)(13 118 18 113)(14 119 19 114)(15 120 20 115)(21 86 26 81)(22 87 27 82)(23 88 28 83)(24 89 29 84)(25 90 30 85)(31 96 36 91)(32 97 37 92)(33 98 38 93)(34 99 39 94)(35 100 40 95)(41 146 46 141)(42 147 47 142)(43 148 48 143)(44 149 49 144)(45 150 50 145)(51 156 56 151)(52 157 57 152)(53 158 58 153)(54 159 59 154)(55 160 60 155)(61 126 66 121)(62 127 67 122)(63 128 68 123)(64 129 69 124)(65 130 70 125)(71 136 76 131)(72 137 77 132)(73 138 78 133)(74 139 79 134)(75 140 80 135)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)(81 82 83 84 85)(86 87 88 89 90)(91 92 93 94 95)(96 97 98 99 100)(101 102 103 104 105)(106 107 108 109 110)(111 112 113 114 115)(116 117 118 119 120)(121 122 123 124 125)(126 127 128 129 130)(131 132 133 134 135)(136 137 138 139 140)(141 142 143 144 145)(146 147 148 149 150)(151 152 153 154 155)(156 157 158 159 160)
(1 25)(2 24)(3 23)(4 22)(5 21)(6 30)(7 29)(8 28)(9 27)(10 26)(11 40)(12 39)(13 38)(14 37)(15 36)(16 35)(17 34)(18 33)(19 32)(20 31)(41 65)(42 64)(43 63)(44 62)(45 61)(46 70)(47 69)(48 68)(49 67)(50 66)(51 80)(52 79)(53 78)(54 77)(55 76)(56 75)(57 74)(58 73)(59 72)(60 71)(81 115)(82 114)(83 113)(84 112)(85 111)(86 120)(87 119)(88 118)(89 117)(90 116)(91 105)(92 104)(93 103)(94 102)(95 101)(96 110)(97 109)(98 108)(99 107)(100 106)(121 160)(122 159)(123 158)(124 157)(125 156)(126 155)(127 154)(128 153)(129 152)(130 151)(131 150)(132 149)(133 148)(134 147)(135 146)(136 145)(137 144)(138 143)(139 142)(140 141)
(1 61 21 41)(2 62 22 42)(3 63 23 43)(4 64 24 44)(5 65 25 45)(6 66 26 46)(7 67 27 47)(8 68 28 48)(9 69 29 49)(10 70 30 50)(11 71 31 51)(12 72 32 52)(13 73 33 53)(14 74 34 54)(15 75 35 55)(16 76 36 56)(17 77 37 57)(18 78 38 58)(19 79 39 59)(20 80 40 60)(81 151 101 131)(82 152 102 132)(83 153 103 133)(84 154 104 134)(85 155 105 135)(86 156 106 136)(87 157 107 137)(88 158 108 138)(89 159 109 139)(90 160 110 140)(91 146 111 126)(92 147 112 127)(93 148 113 128)(94 149 114 129)(95 150 115 130)(96 141 116 121)(97 142 117 122)(98 143 118 123)(99 144 119 124)(100 145 120 125)
G:=sub<Sym(160)| (1,16,6,11)(2,17,7,12)(3,18,8,13)(4,19,9,14)(5,20,10,15)(21,36,26,31)(22,37,27,32)(23,38,28,33)(24,39,29,34)(25,40,30,35)(41,51,46,56)(42,52,47,57)(43,53,48,58)(44,54,49,59)(45,55,50,60)(61,71,66,76)(62,72,67,77)(63,73,68,78)(64,74,69,79)(65,75,70,80)(81,91,86,96)(82,92,87,97)(83,93,88,98)(84,94,89,99)(85,95,90,100)(101,111,106,116)(102,112,107,117)(103,113,108,118)(104,114,109,119)(105,115,110,120)(121,136,126,131)(122,137,127,132)(123,138,128,133)(124,139,129,134)(125,140,130,135)(141,156,146,151)(142,157,147,152)(143,158,148,153)(144,159,149,154)(145,160,150,155), (1,106,6,101)(2,107,7,102)(3,108,8,103)(4,109,9,104)(5,110,10,105)(11,116,16,111)(12,117,17,112)(13,118,18,113)(14,119,19,114)(15,120,20,115)(21,86,26,81)(22,87,27,82)(23,88,28,83)(24,89,29,84)(25,90,30,85)(31,96,36,91)(32,97,37,92)(33,98,38,93)(34,99,39,94)(35,100,40,95)(41,146,46,141)(42,147,47,142)(43,148,48,143)(44,149,49,144)(45,150,50,145)(51,156,56,151)(52,157,57,152)(53,158,58,153)(54,159,59,154)(55,160,60,155)(61,126,66,121)(62,127,67,122)(63,128,68,123)(64,129,69,124)(65,130,70,125)(71,136,76,131)(72,137,77,132)(73,138,78,133)(74,139,79,134)(75,140,80,135), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120)(121,122,123,124,125)(126,127,128,129,130)(131,132,133,134,135)(136,137,138,139,140)(141,142,143,144,145)(146,147,148,149,150)(151,152,153,154,155)(156,157,158,159,160), (1,25)(2,24)(3,23)(4,22)(5,21)(6,30)(7,29)(8,28)(9,27)(10,26)(11,40)(12,39)(13,38)(14,37)(15,36)(16,35)(17,34)(18,33)(19,32)(20,31)(41,65)(42,64)(43,63)(44,62)(45,61)(46,70)(47,69)(48,68)(49,67)(50,66)(51,80)(52,79)(53,78)(54,77)(55,76)(56,75)(57,74)(58,73)(59,72)(60,71)(81,115)(82,114)(83,113)(84,112)(85,111)(86,120)(87,119)(88,118)(89,117)(90,116)(91,105)(92,104)(93,103)(94,102)(95,101)(96,110)(97,109)(98,108)(99,107)(100,106)(121,160)(122,159)(123,158)(124,157)(125,156)(126,155)(127,154)(128,153)(129,152)(130,151)(131,150)(132,149)(133,148)(134,147)(135,146)(136,145)(137,144)(138,143)(139,142)(140,141), (1,61,21,41)(2,62,22,42)(3,63,23,43)(4,64,24,44)(5,65,25,45)(6,66,26,46)(7,67,27,47)(8,68,28,48)(9,69,29,49)(10,70,30,50)(11,71,31,51)(12,72,32,52)(13,73,33,53)(14,74,34,54)(15,75,35,55)(16,76,36,56)(17,77,37,57)(18,78,38,58)(19,79,39,59)(20,80,40,60)(81,151,101,131)(82,152,102,132)(83,153,103,133)(84,154,104,134)(85,155,105,135)(86,156,106,136)(87,157,107,137)(88,158,108,138)(89,159,109,139)(90,160,110,140)(91,146,111,126)(92,147,112,127)(93,148,113,128)(94,149,114,129)(95,150,115,130)(96,141,116,121)(97,142,117,122)(98,143,118,123)(99,144,119,124)(100,145,120,125)>;
G:=Group( (1,16,6,11)(2,17,7,12)(3,18,8,13)(4,19,9,14)(5,20,10,15)(21,36,26,31)(22,37,27,32)(23,38,28,33)(24,39,29,34)(25,40,30,35)(41,51,46,56)(42,52,47,57)(43,53,48,58)(44,54,49,59)(45,55,50,60)(61,71,66,76)(62,72,67,77)(63,73,68,78)(64,74,69,79)(65,75,70,80)(81,91,86,96)(82,92,87,97)(83,93,88,98)(84,94,89,99)(85,95,90,100)(101,111,106,116)(102,112,107,117)(103,113,108,118)(104,114,109,119)(105,115,110,120)(121,136,126,131)(122,137,127,132)(123,138,128,133)(124,139,129,134)(125,140,130,135)(141,156,146,151)(142,157,147,152)(143,158,148,153)(144,159,149,154)(145,160,150,155), (1,106,6,101)(2,107,7,102)(3,108,8,103)(4,109,9,104)(5,110,10,105)(11,116,16,111)(12,117,17,112)(13,118,18,113)(14,119,19,114)(15,120,20,115)(21,86,26,81)(22,87,27,82)(23,88,28,83)(24,89,29,84)(25,90,30,85)(31,96,36,91)(32,97,37,92)(33,98,38,93)(34,99,39,94)(35,100,40,95)(41,146,46,141)(42,147,47,142)(43,148,48,143)(44,149,49,144)(45,150,50,145)(51,156,56,151)(52,157,57,152)(53,158,58,153)(54,159,59,154)(55,160,60,155)(61,126,66,121)(62,127,67,122)(63,128,68,123)(64,129,69,124)(65,130,70,125)(71,136,76,131)(72,137,77,132)(73,138,78,133)(74,139,79,134)(75,140,80,135), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120)(121,122,123,124,125)(126,127,128,129,130)(131,132,133,134,135)(136,137,138,139,140)(141,142,143,144,145)(146,147,148,149,150)(151,152,153,154,155)(156,157,158,159,160), (1,25)(2,24)(3,23)(4,22)(5,21)(6,30)(7,29)(8,28)(9,27)(10,26)(11,40)(12,39)(13,38)(14,37)(15,36)(16,35)(17,34)(18,33)(19,32)(20,31)(41,65)(42,64)(43,63)(44,62)(45,61)(46,70)(47,69)(48,68)(49,67)(50,66)(51,80)(52,79)(53,78)(54,77)(55,76)(56,75)(57,74)(58,73)(59,72)(60,71)(81,115)(82,114)(83,113)(84,112)(85,111)(86,120)(87,119)(88,118)(89,117)(90,116)(91,105)(92,104)(93,103)(94,102)(95,101)(96,110)(97,109)(98,108)(99,107)(100,106)(121,160)(122,159)(123,158)(124,157)(125,156)(126,155)(127,154)(128,153)(129,152)(130,151)(131,150)(132,149)(133,148)(134,147)(135,146)(136,145)(137,144)(138,143)(139,142)(140,141), (1,61,21,41)(2,62,22,42)(3,63,23,43)(4,64,24,44)(5,65,25,45)(6,66,26,46)(7,67,27,47)(8,68,28,48)(9,69,29,49)(10,70,30,50)(11,71,31,51)(12,72,32,52)(13,73,33,53)(14,74,34,54)(15,75,35,55)(16,76,36,56)(17,77,37,57)(18,78,38,58)(19,79,39,59)(20,80,40,60)(81,151,101,131)(82,152,102,132)(83,153,103,133)(84,154,104,134)(85,155,105,135)(86,156,106,136)(87,157,107,137)(88,158,108,138)(89,159,109,139)(90,160,110,140)(91,146,111,126)(92,147,112,127)(93,148,113,128)(94,149,114,129)(95,150,115,130)(96,141,116,121)(97,142,117,122)(98,143,118,123)(99,144,119,124)(100,145,120,125) );
G=PermutationGroup([[(1,16,6,11),(2,17,7,12),(3,18,8,13),(4,19,9,14),(5,20,10,15),(21,36,26,31),(22,37,27,32),(23,38,28,33),(24,39,29,34),(25,40,30,35),(41,51,46,56),(42,52,47,57),(43,53,48,58),(44,54,49,59),(45,55,50,60),(61,71,66,76),(62,72,67,77),(63,73,68,78),(64,74,69,79),(65,75,70,80),(81,91,86,96),(82,92,87,97),(83,93,88,98),(84,94,89,99),(85,95,90,100),(101,111,106,116),(102,112,107,117),(103,113,108,118),(104,114,109,119),(105,115,110,120),(121,136,126,131),(122,137,127,132),(123,138,128,133),(124,139,129,134),(125,140,130,135),(141,156,146,151),(142,157,147,152),(143,158,148,153),(144,159,149,154),(145,160,150,155)], [(1,106,6,101),(2,107,7,102),(3,108,8,103),(4,109,9,104),(5,110,10,105),(11,116,16,111),(12,117,17,112),(13,118,18,113),(14,119,19,114),(15,120,20,115),(21,86,26,81),(22,87,27,82),(23,88,28,83),(24,89,29,84),(25,90,30,85),(31,96,36,91),(32,97,37,92),(33,98,38,93),(34,99,39,94),(35,100,40,95),(41,146,46,141),(42,147,47,142),(43,148,48,143),(44,149,49,144),(45,150,50,145),(51,156,56,151),(52,157,57,152),(53,158,58,153),(54,159,59,154),(55,160,60,155),(61,126,66,121),(62,127,67,122),(63,128,68,123),(64,129,69,124),(65,130,70,125),(71,136,76,131),(72,137,77,132),(73,138,78,133),(74,139,79,134),(75,140,80,135)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80),(81,82,83,84,85),(86,87,88,89,90),(91,92,93,94,95),(96,97,98,99,100),(101,102,103,104,105),(106,107,108,109,110),(111,112,113,114,115),(116,117,118,119,120),(121,122,123,124,125),(126,127,128,129,130),(131,132,133,134,135),(136,137,138,139,140),(141,142,143,144,145),(146,147,148,149,150),(151,152,153,154,155),(156,157,158,159,160)], [(1,25),(2,24),(3,23),(4,22),(5,21),(6,30),(7,29),(8,28),(9,27),(10,26),(11,40),(12,39),(13,38),(14,37),(15,36),(16,35),(17,34),(18,33),(19,32),(20,31),(41,65),(42,64),(43,63),(44,62),(45,61),(46,70),(47,69),(48,68),(49,67),(50,66),(51,80),(52,79),(53,78),(54,77),(55,76),(56,75),(57,74),(58,73),(59,72),(60,71),(81,115),(82,114),(83,113),(84,112),(85,111),(86,120),(87,119),(88,118),(89,117),(90,116),(91,105),(92,104),(93,103),(94,102),(95,101),(96,110),(97,109),(98,108),(99,107),(100,106),(121,160),(122,159),(123,158),(124,157),(125,156),(126,155),(127,154),(128,153),(129,152),(130,151),(131,150),(132,149),(133,148),(134,147),(135,146),(136,145),(137,144),(138,143),(139,142),(140,141)], [(1,61,21,41),(2,62,22,42),(3,63,23,43),(4,64,24,44),(5,65,25,45),(6,66,26,46),(7,67,27,47),(8,68,28,48),(9,69,29,49),(10,70,30,50),(11,71,31,51),(12,72,32,52),(13,73,33,53),(14,74,34,54),(15,75,35,55),(16,76,36,56),(17,77,37,57),(18,78,38,58),(19,79,39,59),(20,80,40,60),(81,151,101,131),(82,152,102,132),(83,153,103,133),(84,154,104,134),(85,155,105,135),(86,156,106,136),(87,157,107,137),(88,158,108,138),(89,159,109,139),(90,160,110,140),(91,146,111,126),(92,147,112,127),(93,148,113,128),(94,149,114,129),(95,150,115,130),(96,141,116,121),(97,142,117,122),(98,143,118,123),(99,144,119,124),(100,145,120,125)]])
50 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 5A | 5B | 8A | 8B | 8C | 8D | 10A | ··· | 10F | 20A | 20B | 20C | 20D | 20E | ··· | 20L | 40A | ··· | 40H |
order | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 8 | 8 | 8 | 8 | 10 | ··· | 10 | 20 | 20 | 20 | 20 | 20 | ··· | 20 | 40 | ··· | 40 |
size | 1 | 1 | 1 | 1 | 20 | 20 | 2 | 2 | 4 | 4 | 4 | 4 | 10 | 10 | 10 | 10 | 20 | 20 | 2 | 2 | 4 | 4 | 20 | 20 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 8 | ··· | 8 | 4 | ··· | 4 |
50 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | - | - | + | + | ||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C4 | D4 | D5 | C4○D4 | D10 | D10 | D10 | C4×D5 | C8⋊C22 | C8.C22 | D4⋊2D5 | D4×D5 | D40⋊C2 | Q16⋊D5 |
kernel | Q8⋊D5⋊6C4 | C10.D8 | C40⋊8C4 | D20⋊5C4 | C5×Q8⋊C4 | D20⋊8C4 | C2×Q8⋊D5 | Q8×Dic5 | Q8⋊D5 | C2×Dic5 | Q8⋊C4 | C20 | C4⋊C4 | C2×C8 | C2×Q8 | Q8 | C10 | C10 | C4 | C22 | C2 | C2 |
# reps | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 8 | 2 | 2 | 2 | 2 | 2 | 2 | 8 | 1 | 1 | 2 | 2 | 4 | 4 |
Matrix representation of Q8⋊D5⋊6C4 ►in GL6(𝔽41)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
0 | 0 | 0 | 0 | 1 | 0 |
40 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 31 | 31 | 30 | 11 |
0 | 0 | 31 | 10 | 30 | 30 |
0 | 0 | 11 | 11 | 10 | 31 |
0 | 0 | 30 | 11 | 31 | 31 |
34 | 40 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
7 | 1 | 0 | 0 | 0 | 0 |
34 | 34 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
32 | 0 | 0 | 0 | 0 | 0 |
0 | 32 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
G:=sub<GL(6,GF(41))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,40,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,40,0],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,31,31,11,30,0,0,31,10,11,11,0,0,30,30,10,31,0,0,11,30,31,31],[34,1,0,0,0,0,40,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[7,34,0,0,0,0,1,34,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,40],[32,0,0,0,0,0,0,32,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,1,0,0] >;
Q8⋊D5⋊6C4 in GAP, Magma, Sage, TeX
Q_8\rtimes D_5\rtimes_6C_4
% in TeX
G:=Group("Q8:D5:6C4");
// GroupNames label
G:=SmallGroup(320,444);
// by ID
G=gap.SmallGroup(320,444);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,253,232,219,58,1684,851,438,102,12550]);
// Polycyclic
G:=Group<a,b,c,d,e|a^4=c^5=d^2=e^4=1,b^2=a^2,b*a*b^-1=d*a*d=e*a*e^-1=a^-1,a*c=c*a,b*c=c*b,d*b*d=a^-1*b,e*b*e^-1=a*b,d*c*d=c^-1,c*e=e*c,d*e=e*d>;
// generators/relations