Extensions 1→N→G→Q→1 with N=C3⋊C8 and Q=D7

Direct product G=N×Q with N=C3⋊C8 and Q=D7
dρLabelID
D7×C3⋊C81684D7xC3:C8336,23

Semidirect products G=N:Q with N=C3⋊C8 and Q=D7
extensionφ:Q→Out NdρLabelID
C3⋊C81D7 = C3⋊D56φ: D7/C7C2 ⊆ Out C3⋊C81684+C3:C8:1D7336,30
C3⋊C82D7 = C6.D28φ: D7/C7C2 ⊆ Out C3⋊C81684-C3:C8:2D7336,34
C3⋊C83D7 = C21⋊SD16φ: D7/C7C2 ⊆ Out C3⋊C81684+C3:C8:3D7336,35
C3⋊C84D7 = C28.32D6φ: D7/C7C2 ⊆ Out C3⋊C81684C3:C8:4D7336,26
C3⋊C85D7 = D42.C4φ: D7/C7C2 ⊆ Out C3⋊C81684C3:C8:5D7336,28
C3⋊C86D7 = D21⋊C8φ: trivial image1684C3:C8:6D7336,25

Non-split extensions G=N.Q with N=C3⋊C8 and Q=D7
extensionφ:Q→Out NdρLabelID
C3⋊C8.D7 = C3⋊Dic28φ: D7/C7C2 ⊆ Out C3⋊C83364-C3:C8.D7336,39

׿
×
𝔽