metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C3⋊2D56, C21⋊2D8, D28⋊1S3, D84⋊5C2, C6.6D28, C42.2D4, C28.22D6, C12.2D14, C84.8C22, C3⋊C8⋊1D7, C7⋊1(D4⋊S3), C4.1(S3×D7), (C3×D28)⋊1C2, C14.1(C3⋊D4), C2.4(C3⋊D28), (C7×C3⋊C8)⋊1C2, SmallGroup(336,30)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C3⋊D56
G = < a,b,c | a3=b56=c2=1, bab-1=cac=a-1, cbc=b-1 >
(1 89 143)(2 144 90)(3 91 145)(4 146 92)(5 93 147)(6 148 94)(7 95 149)(8 150 96)(9 97 151)(10 152 98)(11 99 153)(12 154 100)(13 101 155)(14 156 102)(15 103 157)(16 158 104)(17 105 159)(18 160 106)(19 107 161)(20 162 108)(21 109 163)(22 164 110)(23 111 165)(24 166 112)(25 57 167)(26 168 58)(27 59 113)(28 114 60)(29 61 115)(30 116 62)(31 63 117)(32 118 64)(33 65 119)(34 120 66)(35 67 121)(36 122 68)(37 69 123)(38 124 70)(39 71 125)(40 126 72)(41 73 127)(42 128 74)(43 75 129)(44 130 76)(45 77 131)(46 132 78)(47 79 133)(48 134 80)(49 81 135)(50 136 82)(51 83 137)(52 138 84)(53 85 139)(54 140 86)(55 87 141)(56 142 88)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168)
(1 7)(2 6)(3 5)(8 56)(9 55)(10 54)(11 53)(12 52)(13 51)(14 50)(15 49)(16 48)(17 47)(18 46)(19 45)(20 44)(21 43)(22 42)(23 41)(24 40)(25 39)(26 38)(27 37)(28 36)(29 35)(30 34)(31 33)(57 125)(58 124)(59 123)(60 122)(61 121)(62 120)(63 119)(64 118)(65 117)(66 116)(67 115)(68 114)(69 113)(70 168)(71 167)(72 166)(73 165)(74 164)(75 163)(76 162)(77 161)(78 160)(79 159)(80 158)(81 157)(82 156)(83 155)(84 154)(85 153)(86 152)(87 151)(88 150)(89 149)(90 148)(91 147)(92 146)(93 145)(94 144)(95 143)(96 142)(97 141)(98 140)(99 139)(100 138)(101 137)(102 136)(103 135)(104 134)(105 133)(106 132)(107 131)(108 130)(109 129)(110 128)(111 127)(112 126)
G:=sub<Sym(168)| (1,89,143)(2,144,90)(3,91,145)(4,146,92)(5,93,147)(6,148,94)(7,95,149)(8,150,96)(9,97,151)(10,152,98)(11,99,153)(12,154,100)(13,101,155)(14,156,102)(15,103,157)(16,158,104)(17,105,159)(18,160,106)(19,107,161)(20,162,108)(21,109,163)(22,164,110)(23,111,165)(24,166,112)(25,57,167)(26,168,58)(27,59,113)(28,114,60)(29,61,115)(30,116,62)(31,63,117)(32,118,64)(33,65,119)(34,120,66)(35,67,121)(36,122,68)(37,69,123)(38,124,70)(39,71,125)(40,126,72)(41,73,127)(42,128,74)(43,75,129)(44,130,76)(45,77,131)(46,132,78)(47,79,133)(48,134,80)(49,81,135)(50,136,82)(51,83,137)(52,138,84)(53,85,139)(54,140,86)(55,87,141)(56,142,88), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168), (1,7)(2,6)(3,5)(8,56)(9,55)(10,54)(11,53)(12,52)(13,51)(14,50)(15,49)(16,48)(17,47)(18,46)(19,45)(20,44)(21,43)(22,42)(23,41)(24,40)(25,39)(26,38)(27,37)(28,36)(29,35)(30,34)(31,33)(57,125)(58,124)(59,123)(60,122)(61,121)(62,120)(63,119)(64,118)(65,117)(66,116)(67,115)(68,114)(69,113)(70,168)(71,167)(72,166)(73,165)(74,164)(75,163)(76,162)(77,161)(78,160)(79,159)(80,158)(81,157)(82,156)(83,155)(84,154)(85,153)(86,152)(87,151)(88,150)(89,149)(90,148)(91,147)(92,146)(93,145)(94,144)(95,143)(96,142)(97,141)(98,140)(99,139)(100,138)(101,137)(102,136)(103,135)(104,134)(105,133)(106,132)(107,131)(108,130)(109,129)(110,128)(111,127)(112,126)>;
G:=Group( (1,89,143)(2,144,90)(3,91,145)(4,146,92)(5,93,147)(6,148,94)(7,95,149)(8,150,96)(9,97,151)(10,152,98)(11,99,153)(12,154,100)(13,101,155)(14,156,102)(15,103,157)(16,158,104)(17,105,159)(18,160,106)(19,107,161)(20,162,108)(21,109,163)(22,164,110)(23,111,165)(24,166,112)(25,57,167)(26,168,58)(27,59,113)(28,114,60)(29,61,115)(30,116,62)(31,63,117)(32,118,64)(33,65,119)(34,120,66)(35,67,121)(36,122,68)(37,69,123)(38,124,70)(39,71,125)(40,126,72)(41,73,127)(42,128,74)(43,75,129)(44,130,76)(45,77,131)(46,132,78)(47,79,133)(48,134,80)(49,81,135)(50,136,82)(51,83,137)(52,138,84)(53,85,139)(54,140,86)(55,87,141)(56,142,88), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168), (1,7)(2,6)(3,5)(8,56)(9,55)(10,54)(11,53)(12,52)(13,51)(14,50)(15,49)(16,48)(17,47)(18,46)(19,45)(20,44)(21,43)(22,42)(23,41)(24,40)(25,39)(26,38)(27,37)(28,36)(29,35)(30,34)(31,33)(57,125)(58,124)(59,123)(60,122)(61,121)(62,120)(63,119)(64,118)(65,117)(66,116)(67,115)(68,114)(69,113)(70,168)(71,167)(72,166)(73,165)(74,164)(75,163)(76,162)(77,161)(78,160)(79,159)(80,158)(81,157)(82,156)(83,155)(84,154)(85,153)(86,152)(87,151)(88,150)(89,149)(90,148)(91,147)(92,146)(93,145)(94,144)(95,143)(96,142)(97,141)(98,140)(99,139)(100,138)(101,137)(102,136)(103,135)(104,134)(105,133)(106,132)(107,131)(108,130)(109,129)(110,128)(111,127)(112,126) );
G=PermutationGroup([[(1,89,143),(2,144,90),(3,91,145),(4,146,92),(5,93,147),(6,148,94),(7,95,149),(8,150,96),(9,97,151),(10,152,98),(11,99,153),(12,154,100),(13,101,155),(14,156,102),(15,103,157),(16,158,104),(17,105,159),(18,160,106),(19,107,161),(20,162,108),(21,109,163),(22,164,110),(23,111,165),(24,166,112),(25,57,167),(26,168,58),(27,59,113),(28,114,60),(29,61,115),(30,116,62),(31,63,117),(32,118,64),(33,65,119),(34,120,66),(35,67,121),(36,122,68),(37,69,123),(38,124,70),(39,71,125),(40,126,72),(41,73,127),(42,128,74),(43,75,129),(44,130,76),(45,77,131),(46,132,78),(47,79,133),(48,134,80),(49,81,135),(50,136,82),(51,83,137),(52,138,84),(53,85,139),(54,140,86),(55,87,141),(56,142,88)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)], [(1,7),(2,6),(3,5),(8,56),(9,55),(10,54),(11,53),(12,52),(13,51),(14,50),(15,49),(16,48),(17,47),(18,46),(19,45),(20,44),(21,43),(22,42),(23,41),(24,40),(25,39),(26,38),(27,37),(28,36),(29,35),(30,34),(31,33),(57,125),(58,124),(59,123),(60,122),(61,121),(62,120),(63,119),(64,118),(65,117),(66,116),(67,115),(68,114),(69,113),(70,168),(71,167),(72,166),(73,165),(74,164),(75,163),(76,162),(77,161),(78,160),(79,159),(80,158),(81,157),(82,156),(83,155),(84,154),(85,153),(86,152),(87,151),(88,150),(89,149),(90,148),(91,147),(92,146),(93,145),(94,144),(95,143),(96,142),(97,141),(98,140),(99,139),(100,138),(101,137),(102,136),(103,135),(104,134),(105,133),(106,132),(107,131),(108,130),(109,129),(110,128),(111,127),(112,126)]])
48 conjugacy classes
class | 1 | 2A | 2B | 2C | 3 | 4 | 6A | 6B | 6C | 7A | 7B | 7C | 8A | 8B | 12 | 14A | 14B | 14C | 21A | 21B | 21C | 28A | ··· | 28F | 42A | 42B | 42C | 56A | ··· | 56L | 84A | ··· | 84F |
order | 1 | 2 | 2 | 2 | 3 | 4 | 6 | 6 | 6 | 7 | 7 | 7 | 8 | 8 | 12 | 14 | 14 | 14 | 21 | 21 | 21 | 28 | ··· | 28 | 42 | 42 | 42 | 56 | ··· | 56 | 84 | ··· | 84 |
size | 1 | 1 | 28 | 84 | 2 | 2 | 2 | 28 | 28 | 2 | 2 | 2 | 6 | 6 | 4 | 2 | 2 | 2 | 4 | 4 | 4 | 2 | ··· | 2 | 4 | 4 | 4 | 6 | ··· | 6 | 4 | ··· | 4 |
48 irreducible representations
dim | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |
image | C1 | C2 | C2 | C2 | S3 | D4 | D6 | D7 | D8 | C3⋊D4 | D14 | D28 | D56 | D4⋊S3 | S3×D7 | C3⋊D28 | C3⋊D56 |
kernel | C3⋊D56 | C7×C3⋊C8 | C3×D28 | D84 | D28 | C42 | C28 | C3⋊C8 | C21 | C14 | C12 | C6 | C3 | C7 | C4 | C2 | C1 |
# reps | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 3 | 2 | 2 | 3 | 6 | 12 | 1 | 3 | 3 | 6 |
Matrix representation of C3⋊D56 ►in GL4(𝔽337) generated by
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 1 | 112 |
0 | 0 | 9 | 335 |
237 | 174 | 0 | 0 |
163 | 50 | 0 | 0 |
0 | 0 | 336 | 0 |
0 | 0 | 328 | 1 |
275 | 195 | 0 | 0 |
281 | 62 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 9 | 336 |
G:=sub<GL(4,GF(337))| [1,0,0,0,0,1,0,0,0,0,1,9,0,0,112,335],[237,163,0,0,174,50,0,0,0,0,336,328,0,0,0,1],[275,281,0,0,195,62,0,0,0,0,1,9,0,0,0,336] >;
C3⋊D56 in GAP, Magma, Sage, TeX
C_3\rtimes D_{56}
% in TeX
G:=Group("C3:D56");
// GroupNames label
G:=SmallGroup(336,30);
// by ID
G=gap.SmallGroup(336,30);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-3,-7,73,79,218,50,490,10373]);
// Polycyclic
G:=Group<a,b,c|a^3=b^56=c^2=1,b*a*b^-1=c*a*c=a^-1,c*b*c=b^-1>;
// generators/relations
Export