Copied to
clipboard

G = C3⋊D56order 336 = 24·3·7

The semidirect product of C3 and D56 acting via D56/D28=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C32D56, C212D8, D281S3, D845C2, C6.6D28, C42.2D4, C28.22D6, C12.2D14, C84.8C22, C3⋊C81D7, C71(D4⋊S3), C4.1(S3×D7), (C3×D28)⋊1C2, C14.1(C3⋊D4), C2.4(C3⋊D28), (C7×C3⋊C8)⋊1C2, SmallGroup(336,30)

Series: Derived Chief Lower central Upper central

C1C84 — C3⋊D56
C1C7C21C42C84C3×D28 — C3⋊D56
C21C42C84 — C3⋊D56
C1C2C4

Generators and relations for C3⋊D56
 G = < a,b,c | a3=b56=c2=1, bab-1=cac=a-1, cbc=b-1 >

28C2
84C2
14C22
42C22
28C6
28S3
4D7
12D7
3C8
7D4
21D4
14C2×C6
14D6
2D14
6D14
4D21
4C3×D7
21D8
7C3×D4
7D12
3C56
3D28
2C6×D7
2D42
7D4⋊S3
3D56

Smallest permutation representation of C3⋊D56
On 168 points
Generators in S168
(1 89 143)(2 144 90)(3 91 145)(4 146 92)(5 93 147)(6 148 94)(7 95 149)(8 150 96)(9 97 151)(10 152 98)(11 99 153)(12 154 100)(13 101 155)(14 156 102)(15 103 157)(16 158 104)(17 105 159)(18 160 106)(19 107 161)(20 162 108)(21 109 163)(22 164 110)(23 111 165)(24 166 112)(25 57 167)(26 168 58)(27 59 113)(28 114 60)(29 61 115)(30 116 62)(31 63 117)(32 118 64)(33 65 119)(34 120 66)(35 67 121)(36 122 68)(37 69 123)(38 124 70)(39 71 125)(40 126 72)(41 73 127)(42 128 74)(43 75 129)(44 130 76)(45 77 131)(46 132 78)(47 79 133)(48 134 80)(49 81 135)(50 136 82)(51 83 137)(52 138 84)(53 85 139)(54 140 86)(55 87 141)(56 142 88)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168)
(1 7)(2 6)(3 5)(8 56)(9 55)(10 54)(11 53)(12 52)(13 51)(14 50)(15 49)(16 48)(17 47)(18 46)(19 45)(20 44)(21 43)(22 42)(23 41)(24 40)(25 39)(26 38)(27 37)(28 36)(29 35)(30 34)(31 33)(57 125)(58 124)(59 123)(60 122)(61 121)(62 120)(63 119)(64 118)(65 117)(66 116)(67 115)(68 114)(69 113)(70 168)(71 167)(72 166)(73 165)(74 164)(75 163)(76 162)(77 161)(78 160)(79 159)(80 158)(81 157)(82 156)(83 155)(84 154)(85 153)(86 152)(87 151)(88 150)(89 149)(90 148)(91 147)(92 146)(93 145)(94 144)(95 143)(96 142)(97 141)(98 140)(99 139)(100 138)(101 137)(102 136)(103 135)(104 134)(105 133)(106 132)(107 131)(108 130)(109 129)(110 128)(111 127)(112 126)

G:=sub<Sym(168)| (1,89,143)(2,144,90)(3,91,145)(4,146,92)(5,93,147)(6,148,94)(7,95,149)(8,150,96)(9,97,151)(10,152,98)(11,99,153)(12,154,100)(13,101,155)(14,156,102)(15,103,157)(16,158,104)(17,105,159)(18,160,106)(19,107,161)(20,162,108)(21,109,163)(22,164,110)(23,111,165)(24,166,112)(25,57,167)(26,168,58)(27,59,113)(28,114,60)(29,61,115)(30,116,62)(31,63,117)(32,118,64)(33,65,119)(34,120,66)(35,67,121)(36,122,68)(37,69,123)(38,124,70)(39,71,125)(40,126,72)(41,73,127)(42,128,74)(43,75,129)(44,130,76)(45,77,131)(46,132,78)(47,79,133)(48,134,80)(49,81,135)(50,136,82)(51,83,137)(52,138,84)(53,85,139)(54,140,86)(55,87,141)(56,142,88), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168), (1,7)(2,6)(3,5)(8,56)(9,55)(10,54)(11,53)(12,52)(13,51)(14,50)(15,49)(16,48)(17,47)(18,46)(19,45)(20,44)(21,43)(22,42)(23,41)(24,40)(25,39)(26,38)(27,37)(28,36)(29,35)(30,34)(31,33)(57,125)(58,124)(59,123)(60,122)(61,121)(62,120)(63,119)(64,118)(65,117)(66,116)(67,115)(68,114)(69,113)(70,168)(71,167)(72,166)(73,165)(74,164)(75,163)(76,162)(77,161)(78,160)(79,159)(80,158)(81,157)(82,156)(83,155)(84,154)(85,153)(86,152)(87,151)(88,150)(89,149)(90,148)(91,147)(92,146)(93,145)(94,144)(95,143)(96,142)(97,141)(98,140)(99,139)(100,138)(101,137)(102,136)(103,135)(104,134)(105,133)(106,132)(107,131)(108,130)(109,129)(110,128)(111,127)(112,126)>;

G:=Group( (1,89,143)(2,144,90)(3,91,145)(4,146,92)(5,93,147)(6,148,94)(7,95,149)(8,150,96)(9,97,151)(10,152,98)(11,99,153)(12,154,100)(13,101,155)(14,156,102)(15,103,157)(16,158,104)(17,105,159)(18,160,106)(19,107,161)(20,162,108)(21,109,163)(22,164,110)(23,111,165)(24,166,112)(25,57,167)(26,168,58)(27,59,113)(28,114,60)(29,61,115)(30,116,62)(31,63,117)(32,118,64)(33,65,119)(34,120,66)(35,67,121)(36,122,68)(37,69,123)(38,124,70)(39,71,125)(40,126,72)(41,73,127)(42,128,74)(43,75,129)(44,130,76)(45,77,131)(46,132,78)(47,79,133)(48,134,80)(49,81,135)(50,136,82)(51,83,137)(52,138,84)(53,85,139)(54,140,86)(55,87,141)(56,142,88), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168), (1,7)(2,6)(3,5)(8,56)(9,55)(10,54)(11,53)(12,52)(13,51)(14,50)(15,49)(16,48)(17,47)(18,46)(19,45)(20,44)(21,43)(22,42)(23,41)(24,40)(25,39)(26,38)(27,37)(28,36)(29,35)(30,34)(31,33)(57,125)(58,124)(59,123)(60,122)(61,121)(62,120)(63,119)(64,118)(65,117)(66,116)(67,115)(68,114)(69,113)(70,168)(71,167)(72,166)(73,165)(74,164)(75,163)(76,162)(77,161)(78,160)(79,159)(80,158)(81,157)(82,156)(83,155)(84,154)(85,153)(86,152)(87,151)(88,150)(89,149)(90,148)(91,147)(92,146)(93,145)(94,144)(95,143)(96,142)(97,141)(98,140)(99,139)(100,138)(101,137)(102,136)(103,135)(104,134)(105,133)(106,132)(107,131)(108,130)(109,129)(110,128)(111,127)(112,126) );

G=PermutationGroup([[(1,89,143),(2,144,90),(3,91,145),(4,146,92),(5,93,147),(6,148,94),(7,95,149),(8,150,96),(9,97,151),(10,152,98),(11,99,153),(12,154,100),(13,101,155),(14,156,102),(15,103,157),(16,158,104),(17,105,159),(18,160,106),(19,107,161),(20,162,108),(21,109,163),(22,164,110),(23,111,165),(24,166,112),(25,57,167),(26,168,58),(27,59,113),(28,114,60),(29,61,115),(30,116,62),(31,63,117),(32,118,64),(33,65,119),(34,120,66),(35,67,121),(36,122,68),(37,69,123),(38,124,70),(39,71,125),(40,126,72),(41,73,127),(42,128,74),(43,75,129),(44,130,76),(45,77,131),(46,132,78),(47,79,133),(48,134,80),(49,81,135),(50,136,82),(51,83,137),(52,138,84),(53,85,139),(54,140,86),(55,87,141),(56,142,88)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)], [(1,7),(2,6),(3,5),(8,56),(9,55),(10,54),(11,53),(12,52),(13,51),(14,50),(15,49),(16,48),(17,47),(18,46),(19,45),(20,44),(21,43),(22,42),(23,41),(24,40),(25,39),(26,38),(27,37),(28,36),(29,35),(30,34),(31,33),(57,125),(58,124),(59,123),(60,122),(61,121),(62,120),(63,119),(64,118),(65,117),(66,116),(67,115),(68,114),(69,113),(70,168),(71,167),(72,166),(73,165),(74,164),(75,163),(76,162),(77,161),(78,160),(79,159),(80,158),(81,157),(82,156),(83,155),(84,154),(85,153),(86,152),(87,151),(88,150),(89,149),(90,148),(91,147),(92,146),(93,145),(94,144),(95,143),(96,142),(97,141),(98,140),(99,139),(100,138),(101,137),(102,136),(103,135),(104,134),(105,133),(106,132),(107,131),(108,130),(109,129),(110,128),(111,127),(112,126)]])

48 conjugacy classes

class 1 2A2B2C 3  4 6A6B6C7A7B7C8A8B 12 14A14B14C21A21B21C28A···28F42A42B42C56A···56L84A···84F
order122234666777881214141421212128···2842424256···5684···84
size11288422228282226642224442···24446···64···4

48 irreducible representations

dim11112222222224444
type++++++++++++++++
imageC1C2C2C2S3D4D6D7D8C3⋊D4D14D28D56D4⋊S3S3×D7C3⋊D28C3⋊D56
kernelC3⋊D56C7×C3⋊C8C3×D28D84D28C42C28C3⋊C8C21C14C12C6C3C7C4C2C1
# reps111111132236121336

Matrix representation of C3⋊D56 in GL4(𝔽337) generated by

1000
0100
001112
009335
,
23717400
1635000
003360
003281
,
27519500
2816200
0010
009336
G:=sub<GL(4,GF(337))| [1,0,0,0,0,1,0,0,0,0,1,9,0,0,112,335],[237,163,0,0,174,50,0,0,0,0,336,328,0,0,0,1],[275,281,0,0,195,62,0,0,0,0,1,9,0,0,0,336] >;

C3⋊D56 in GAP, Magma, Sage, TeX

C_3\rtimes D_{56}
% in TeX

G:=Group("C3:D56");
// GroupNames label

G:=SmallGroup(336,30);
// by ID

G=gap.SmallGroup(336,30);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-3,-7,73,79,218,50,490,10373]);
// Polycyclic

G:=Group<a,b,c|a^3=b^56=c^2=1,b*a*b^-1=c*a*c=a^-1,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of C3⋊D56 in TeX

׿
×
𝔽