Extensions 1→N→G→Q→1 with N=C12 and Q=Dic7

Direct product G=N×Q with N=C12 and Q=Dic7

Semidirect products G=N:Q with N=C12 and Q=Dic7
extensionφ:Q→Aut NdρLabelID
C121Dic7 = C84⋊C4φ: Dic7/C14C2 ⊆ Aut C12336C12:1Dic7336,99
C122Dic7 = C4×Dic21φ: Dic7/C14C2 ⊆ Aut C12336C12:2Dic7336,97
C123Dic7 = C3×C4⋊Dic7φ: Dic7/C14C2 ⊆ Aut C12336C12:3Dic7336,67

Non-split extensions G=N.Q with N=C12 and Q=Dic7
extensionφ:Q→Aut NdρLabelID
C12.1Dic7 = C84.C4φ: Dic7/C14C2 ⊆ Aut C121682C12.1Dic7336,96
C12.2Dic7 = C21⋊C16φ: Dic7/C14C2 ⊆ Aut C123362C12.2Dic7336,5
C12.3Dic7 = C2×C21⋊C8φ: Dic7/C14C2 ⊆ Aut C12336C12.3Dic7336,95
C12.4Dic7 = C3×C4.Dic7φ: Dic7/C14C2 ⊆ Aut C121682C12.4Dic7336,64
C12.5Dic7 = C3×C7⋊C16central extension (φ=1)3362C12.5Dic7336,4
C12.6Dic7 = C6×C7⋊C8central extension (φ=1)336C12.6Dic7336,63