Copied to
clipboard

G = C84.C4order 336 = 24·3·7

1st non-split extension by C84 of C4 acting via C4/C2=C2

metacyclic, supersoluble, monomial, 2-hyperelementary

Aliases: C84.1C4, C4.Dic21, C28.50D6, C4.15D42, C217M4(2), C12.51D14, C28.1Dic3, C12.1Dic7, C22.Dic21, C84.57C22, C21⋊C85C2, (C2×C42).3C4, (C2×C28).5S3, (C2×C84).7C2, (C2×C12).5D7, (C2×C4).2D21, C42.30(C2×C4), C32(C4.Dic7), C72(C4.Dic3), (C2×C6).3Dic7, C6.7(C2×Dic7), C14.7(C2×Dic3), C2.3(C2×Dic21), (C2×C14).3Dic3, SmallGroup(336,96)

Series: Derived Chief Lower central Upper central

C1C42 — C84.C4
C1C7C21C42C84C21⋊C8 — C84.C4
C21C42 — C84.C4
C1C4C2×C4

Generators and relations for C84.C4
 G = < a,b | a84=1, b4=a42, bab-1=a-1 >

2C2
2C6
2C14
21C8
21C8
2C42
21M4(2)
7C3⋊C8
7C3⋊C8
3C7⋊C8
3C7⋊C8
7C4.Dic3
3C4.Dic7

Smallest permutation representation of C84.C4
On 168 points
Generators in S168
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168)
(1 94 22 157 43 136 64 115)(2 93 23 156 44 135 65 114)(3 92 24 155 45 134 66 113)(4 91 25 154 46 133 67 112)(5 90 26 153 47 132 68 111)(6 89 27 152 48 131 69 110)(7 88 28 151 49 130 70 109)(8 87 29 150 50 129 71 108)(9 86 30 149 51 128 72 107)(10 85 31 148 52 127 73 106)(11 168 32 147 53 126 74 105)(12 167 33 146 54 125 75 104)(13 166 34 145 55 124 76 103)(14 165 35 144 56 123 77 102)(15 164 36 143 57 122 78 101)(16 163 37 142 58 121 79 100)(17 162 38 141 59 120 80 99)(18 161 39 140 60 119 81 98)(19 160 40 139 61 118 82 97)(20 159 41 138 62 117 83 96)(21 158 42 137 63 116 84 95)

G:=sub<Sym(168)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168), (1,94,22,157,43,136,64,115)(2,93,23,156,44,135,65,114)(3,92,24,155,45,134,66,113)(4,91,25,154,46,133,67,112)(5,90,26,153,47,132,68,111)(6,89,27,152,48,131,69,110)(7,88,28,151,49,130,70,109)(8,87,29,150,50,129,71,108)(9,86,30,149,51,128,72,107)(10,85,31,148,52,127,73,106)(11,168,32,147,53,126,74,105)(12,167,33,146,54,125,75,104)(13,166,34,145,55,124,76,103)(14,165,35,144,56,123,77,102)(15,164,36,143,57,122,78,101)(16,163,37,142,58,121,79,100)(17,162,38,141,59,120,80,99)(18,161,39,140,60,119,81,98)(19,160,40,139,61,118,82,97)(20,159,41,138,62,117,83,96)(21,158,42,137,63,116,84,95)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168), (1,94,22,157,43,136,64,115)(2,93,23,156,44,135,65,114)(3,92,24,155,45,134,66,113)(4,91,25,154,46,133,67,112)(5,90,26,153,47,132,68,111)(6,89,27,152,48,131,69,110)(7,88,28,151,49,130,70,109)(8,87,29,150,50,129,71,108)(9,86,30,149,51,128,72,107)(10,85,31,148,52,127,73,106)(11,168,32,147,53,126,74,105)(12,167,33,146,54,125,75,104)(13,166,34,145,55,124,76,103)(14,165,35,144,56,123,77,102)(15,164,36,143,57,122,78,101)(16,163,37,142,58,121,79,100)(17,162,38,141,59,120,80,99)(18,161,39,140,60,119,81,98)(19,160,40,139,61,118,82,97)(20,159,41,138,62,117,83,96)(21,158,42,137,63,116,84,95) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)], [(1,94,22,157,43,136,64,115),(2,93,23,156,44,135,65,114),(3,92,24,155,45,134,66,113),(4,91,25,154,46,133,67,112),(5,90,26,153,47,132,68,111),(6,89,27,152,48,131,69,110),(7,88,28,151,49,130,70,109),(8,87,29,150,50,129,71,108),(9,86,30,149,51,128,72,107),(10,85,31,148,52,127,73,106),(11,168,32,147,53,126,74,105),(12,167,33,146,54,125,75,104),(13,166,34,145,55,124,76,103),(14,165,35,144,56,123,77,102),(15,164,36,143,57,122,78,101),(16,163,37,142,58,121,79,100),(17,162,38,141,59,120,80,99),(18,161,39,140,60,119,81,98),(19,160,40,139,61,118,82,97),(20,159,41,138,62,117,83,96),(21,158,42,137,63,116,84,95)]])

90 conjugacy classes

class 1 2A2B 3 4A4B4C6A6B6C7A7B7C8A8B8C8D12A12B12C12D14A···14I21A···21F28A···28L42A···42R84A···84X
order122344466677788881212121214···1421···2128···2842···4284···84
size11221122222224242424222222···22···22···22···22···2

90 irreducible representations

dim111112222222222222222
type++++-+-+-+-+-+-
imageC1C2C2C4C4S3Dic3D6Dic3D7M4(2)Dic7D14Dic7D21C4.Dic3Dic21D42Dic21C4.Dic7C84.C4
kernelC84.C4C21⋊C8C2×C84C84C2×C42C2×C28C28C28C2×C14C2×C12C21C12C12C2×C6C2×C4C7C4C4C22C3C1
# reps12122111132333646661224

Matrix representation of C84.C4 in GL4(𝔽337) generated by

23632100
2824800
0022098
00072
,
1621700
16117500
0031431
007623
G:=sub<GL(4,GF(337))| [236,28,0,0,321,248,0,0,0,0,220,0,0,0,98,72],[162,161,0,0,17,175,0,0,0,0,314,76,0,0,31,23] >;

C84.C4 in GAP, Magma, Sage, TeX

C_{84}.C_4
% in TeX

G:=Group("C84.C4");
// GroupNames label

G:=SmallGroup(336,96);
// by ID

G=gap.SmallGroup(336,96);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-3,-7,24,121,50,964,10373]);
// Polycyclic

G:=Group<a,b|a^84=1,b^4=a^42,b*a*b^-1=a^-1>;
// generators/relations

Export

Subgroup lattice of C84.C4 in TeX

׿
×
𝔽