Extensions 1→N→G→Q→1 with N=C14 and Q=Dic6

Direct product G=N×Q with N=C14 and Q=Dic6

Semidirect products G=N:Q with N=C14 and Q=Dic6
extensionφ:Q→Aut NdρLabelID
C141Dic6 = C2×C21⋊Q8φ: Dic6/Dic3C2 ⊆ Aut C14336C14:1Dic6336,160
C142Dic6 = C2×Dic42φ: Dic6/C12C2 ⊆ Aut C14336C14:2Dic6336,194

Non-split extensions G=N.Q with N=C14 and Q=Dic6
extensionφ:Q→Aut NdρLabelID
C14.1Dic6 = C42.Q8φ: Dic6/Dic3C2 ⊆ Aut C14336C14.1Dic6336,45
C14.2Dic6 = Dic21⋊C4φ: Dic6/Dic3C2 ⊆ Aut C14336C14.2Dic6336,46
C14.3Dic6 = C14.Dic6φ: Dic6/Dic3C2 ⊆ Aut C14336C14.3Dic6336,47
C14.4Dic6 = C42.4Q8φ: Dic6/C12C2 ⊆ Aut C14336C14.4Dic6336,98
C14.5Dic6 = C84⋊C4φ: Dic6/C12C2 ⊆ Aut C14336C14.5Dic6336,99
C14.6Dic6 = C7×Dic3⋊C4central extension (φ=1)336C14.6Dic6336,82
C14.7Dic6 = C7×C4⋊Dic3central extension (φ=1)336C14.7Dic6336,83