Copied to
clipboard

G = Dic6order 24 = 23·3

Dicyclic group

metacyclic, supersoluble, monomial, 2-hyperelementary

Aliases: Dic6, C3⋊Q8, C4.S3, C2.3D6, C12.1C2, Dic3.C2, C6.1C22, SmallGroup(24,4)

Series: Derived Chief Lower central Upper central

C1C6 — Dic6
C1C3C6Dic3 — Dic6
C3C6 — Dic6
C1C2C4

Generators and relations for Dic6
 G = < a,b | a12=1, b2=a6, bab-1=a-1 >

3C4
3C4
3Q8

Character table of Dic6

 class 1234A4B4C612A12B
 size 112266222
ρ1111111111    trivial
ρ21111-1-1111    linear of order 2
ρ3111-1-111-1-1    linear of order 2
ρ4111-11-11-1-1    linear of order 2
ρ522-1200-1-1-1    orthogonal lifted from S3
ρ622-1-200-111    orthogonal lifted from D6
ρ72-22000-200    symplectic lifted from Q8, Schur index 2
ρ82-2-100013-3    symplectic faithful, Schur index 2
ρ92-2-10001-33    symplectic faithful, Schur index 2

Permutation representations of Dic6
Regular action on 24 points - transitive group 24T5
Generators in S24
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)
(1 16 7 22)(2 15 8 21)(3 14 9 20)(4 13 10 19)(5 24 11 18)(6 23 12 17)

G:=sub<Sym(24)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24), (1,16,7,22)(2,15,8,21)(3,14,9,20)(4,13,10,19)(5,24,11,18)(6,23,12,17)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24), (1,16,7,22)(2,15,8,21)(3,14,9,20)(4,13,10,19)(5,24,11,18)(6,23,12,17) );

G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24)], [(1,16,7,22),(2,15,8,21),(3,14,9,20),(4,13,10,19),(5,24,11,18),(6,23,12,17)])

G:=TransitiveGroup(24,5);

Matrix representation of Dic6 in GL2(𝔽11) generated by

27
73
,
010
10
G:=sub<GL(2,GF(11))| [2,7,7,3],[0,1,10,0] >;

Dic6 in GAP, Magma, Sage, TeX

{\rm Dic}_6
% in TeX

G:=Group("Dic6");
// GroupNames label

G:=SmallGroup(24,4);
// by ID

G=gap.SmallGroup(24,4);
# by ID

G:=PCGroup([4,-2,-2,-2,-3,16,49,21,259]);
// Polycyclic

G:=Group<a,b|a^12=1,b^2=a^6,b*a*b^-1=a^-1>;
// generators/relations

׿
×
𝔽