Extensions 1→N→G→Q→1 with N=C2×C6 and Q=Dic7

Direct product G=N×Q with N=C2×C6 and Q=Dic7
dρLabelID
C2×C6×Dic7336C2xC6xDic7336,182

Semidirect products G=N:Q with N=C2×C6 and Q=Dic7
extensionφ:Q→Aut NdρLabelID
(C2×C6)⋊1Dic7 = C3×C23.D7φ: Dic7/C14C2 ⊆ Aut C2×C6168(C2xC6):1Dic7336,73
(C2×C6)⋊2Dic7 = C42.38D4φ: Dic7/C14C2 ⊆ Aut C2×C6168(C2xC6):2Dic7336,105
(C2×C6)⋊3Dic7 = C22×Dic21φ: Dic7/C14C2 ⊆ Aut C2×C6336(C2xC6):3Dic7336,202

Non-split extensions G=N.Q with N=C2×C6 and Q=Dic7
extensionφ:Q→Aut NdρLabelID
(C2×C6).1Dic7 = C3×C4.Dic7φ: Dic7/C14C2 ⊆ Aut C2×C61682(C2xC6).1Dic7336,64
(C2×C6).2Dic7 = C2×C21⋊C8φ: Dic7/C14C2 ⊆ Aut C2×C6336(C2xC6).2Dic7336,95
(C2×C6).3Dic7 = C84.C4φ: Dic7/C14C2 ⊆ Aut C2×C61682(C2xC6).3Dic7336,96
(C2×C6).4Dic7 = C6×C7⋊C8central extension (φ=1)336(C2xC6).4Dic7336,63

׿
×
𝔽