Extensions 1→N→G→Q→1 with N=C14 and Q=C2×Dic3

Direct product G=N×Q with N=C14 and Q=C2×Dic3
dρLabelID
Dic3×C2×C14336Dic3xC2xC14336,192

Semidirect products G=N:Q with N=C14 and Q=C2×Dic3
extensionφ:Q→Aut NdρLabelID
C141(C2×Dic3) = C2×Dic3×D7φ: C2×Dic3/Dic3C2 ⊆ Aut C14168C14:1(C2xDic3)336,151
C142(C2×Dic3) = C22×Dic21φ: C2×Dic3/C2×C6C2 ⊆ Aut C14336C14:2(C2xDic3)336,202

Non-split extensions G=N.Q with N=C14 and Q=C2×Dic3
extensionφ:Q→Aut NdρLabelID
C14.1(C2×Dic3) = D7×C3⋊C8φ: C2×Dic3/Dic3C2 ⊆ Aut C141684C14.1(C2xDic3)336,23
C14.2(C2×Dic3) = C28.32D6φ: C2×Dic3/Dic3C2 ⊆ Aut C141684C14.2(C2xDic3)336,26
C14.3(C2×Dic3) = Dic3×Dic7φ: C2×Dic3/Dic3C2 ⊆ Aut C14336C14.3(C2xDic3)336,41
C14.4(C2×Dic3) = D14⋊Dic3φ: C2×Dic3/Dic3C2 ⊆ Aut C14168C14.4(C2xDic3)336,42
C14.5(C2×Dic3) = C42.Q8φ: C2×Dic3/Dic3C2 ⊆ Aut C14336C14.5(C2xDic3)336,45
C14.6(C2×Dic3) = C2×C21⋊C8φ: C2×Dic3/C2×C6C2 ⊆ Aut C14336C14.6(C2xDic3)336,95
C14.7(C2×Dic3) = C84.C4φ: C2×Dic3/C2×C6C2 ⊆ Aut C141682C14.7(C2xDic3)336,96
C14.8(C2×Dic3) = C4×Dic21φ: C2×Dic3/C2×C6C2 ⊆ Aut C14336C14.8(C2xDic3)336,97
C14.9(C2×Dic3) = C84⋊C4φ: C2×Dic3/C2×C6C2 ⊆ Aut C14336C14.9(C2xDic3)336,99
C14.10(C2×Dic3) = C42.38D4φ: C2×Dic3/C2×C6C2 ⊆ Aut C14168C14.10(C2xDic3)336,105
C14.11(C2×Dic3) = C14×C3⋊C8central extension (φ=1)336C14.11(C2xDic3)336,79
C14.12(C2×Dic3) = C7×C4.Dic3central extension (φ=1)1682C14.12(C2xDic3)336,80
C14.13(C2×Dic3) = Dic3×C28central extension (φ=1)336C14.13(C2xDic3)336,81
C14.14(C2×Dic3) = C7×C4⋊Dic3central extension (φ=1)336C14.14(C2xDic3)336,83
C14.15(C2×Dic3) = C7×C6.D4central extension (φ=1)168C14.15(C2xDic3)336,89

׿
×
𝔽