extension | φ:Q→Aut N | d | ρ | Label | ID |
C22.1(C2×Q8) = C4×Dic22 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C22 | 352 | | C22.1(C2xQ8) | 352,63 |
C22.2(C2×Q8) = C44⋊2Q8 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C22 | 352 | | C22.2(C2xQ8) | 352,64 |
C22.3(C2×Q8) = C44.6Q8 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C22 | 352 | | C22.3(C2xQ8) | 352,65 |
C22.4(C2×Q8) = C22⋊Dic22 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C22 | 176 | | C22.4(C2xQ8) | 352,73 |
C22.5(C2×Q8) = C44⋊Q8 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C22 | 352 | | C22.5(C2xQ8) | 352,83 |
C22.6(C2×Q8) = C44.3Q8 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C22 | 352 | | C22.6(C2xQ8) | 352,85 |
C22.7(C2×Q8) = C2×Dic11⋊C4 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C22 | 352 | | C22.7(C2xQ8) | 352,118 |
C22.8(C2×Q8) = C44.48D4 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C22 | 176 | | C22.8(C2xQ8) | 352,119 |
C22.9(C2×Q8) = C2×C44⋊C4 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C22 | 352 | | C22.9(C2xQ8) | 352,120 |
C22.10(C2×Q8) = Dic22⋊C4 | φ: C2×Q8/Q8 → C2 ⊆ Aut C22 | 352 | | C22.10(C2xQ8) | 352,82 |
C22.11(C2×Q8) = Dic11.Q8 | φ: C2×Q8/Q8 → C2 ⊆ Aut C22 | 352 | | C22.11(C2xQ8) | 352,84 |
C22.12(C2×Q8) = C4⋊C4×D11 | φ: C2×Q8/Q8 → C2 ⊆ Aut C22 | 176 | | C22.12(C2xQ8) | 352,86 |
C22.13(C2×Q8) = D22⋊Q8 | φ: C2×Q8/Q8 → C2 ⊆ Aut C22 | 176 | | C22.13(C2xQ8) | 352,91 |
C22.14(C2×Q8) = D22⋊2Q8 | φ: C2×Q8/Q8 → C2 ⊆ Aut C22 | 176 | | C22.14(C2xQ8) | 352,92 |
C22.15(C2×Q8) = Dic11⋊Q8 | φ: C2×Q8/Q8 → C2 ⊆ Aut C22 | 352 | | C22.15(C2xQ8) | 352,139 |
C22.16(C2×Q8) = Q8×Dic11 | φ: C2×Q8/Q8 → C2 ⊆ Aut C22 | 352 | | C22.16(C2xQ8) | 352,140 |
C22.17(C2×Q8) = D22⋊3Q8 | φ: C2×Q8/Q8 → C2 ⊆ Aut C22 | 176 | | C22.17(C2xQ8) | 352,141 |
C22.18(C2×Q8) = C4⋊C4×C22 | central extension (φ=1) | 352 | | C22.18(C2xQ8) | 352,151 |
C22.19(C2×Q8) = Q8×C44 | central extension (φ=1) | 352 | | C22.19(C2xQ8) | 352,154 |
C22.20(C2×Q8) = C11×C22⋊Q8 | central extension (φ=1) | 176 | | C22.20(C2xQ8) | 352,157 |
C22.21(C2×Q8) = C11×C42.C2 | central extension (φ=1) | 352 | | C22.21(C2xQ8) | 352,160 |
C22.22(C2×Q8) = C11×C4⋊Q8 | central extension (φ=1) | 352 | | C22.22(C2xQ8) | 352,163 |