Copied to
clipboard

G = D22⋊Q8order 352 = 25·11

1st semidirect product of D22 and Q8 acting via Q8/C4=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D221Q8, Dic11.7D4, C4⋊C44D11, C2.6(Q8×D11), D22⋊C4.2C2, C2.14(D4×D11), C22.26(C2×D4), (C2×C4).13D22, C112(C22⋊Q8), C22.13(C2×Q8), (C2×Dic22)⋊4C2, Dic11⋊C412C2, C22.13(C4○D4), (C2×C22).37C23, (C2×C44).58C22, C2.15(D445C2), C22.51(C22×D11), (C2×Dic11).12C22, (C22×D11).21C22, (C11×C4⋊C4)⋊7C2, (C2×C4×D11).9C2, SmallGroup(352,91)

Series: Derived Chief Lower central Upper central

C1C2×C22 — D22⋊Q8
C1C11C22C2×C22C22×D11C2×C4×D11 — D22⋊Q8
C11C2×C22 — D22⋊Q8
C1C22C4⋊C4

Generators and relations for D22⋊Q8
 G = < a,b,c,d | a22=b2=c4=1, d2=c2, bab=cac-1=dad-1=a-1, cbc-1=a9b, dbd-1=a20b, dcd-1=c-1 >

Subgroups: 450 in 74 conjugacy classes, 33 normal (29 characteristic)
C1, C2, C2, C4, C22, C22, C2×C4, C2×C4, Q8, C23, C11, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C2×Q8, D11, C22, C22⋊Q8, Dic11, Dic11, C44, D22, D22, C2×C22, Dic22, C4×D11, C2×Dic11, C2×C44, C22×D11, Dic11⋊C4, D22⋊C4, C11×C4⋊C4, C2×Dic22, C2×C4×D11, D22⋊Q8
Quotients: C1, C2, C22, D4, Q8, C23, C2×D4, C2×Q8, C4○D4, D11, C22⋊Q8, D22, C22×D11, D445C2, D4×D11, Q8×D11, D22⋊Q8

Smallest permutation representation of D22⋊Q8
On 176 points
Generators in S176
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22)(23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44)(45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66)(67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132)(133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154)(155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176)
(1 162)(2 161)(3 160)(4 159)(5 158)(6 157)(7 156)(8 155)(9 176)(10 175)(11 174)(12 173)(13 172)(14 171)(15 170)(16 169)(17 168)(18 167)(19 166)(20 165)(21 164)(22 163)(23 114)(24 113)(25 112)(26 111)(27 132)(28 131)(29 130)(30 129)(31 128)(32 127)(33 126)(34 125)(35 124)(36 123)(37 122)(38 121)(39 120)(40 119)(41 118)(42 117)(43 116)(44 115)(45 89)(46 110)(47 109)(48 108)(49 107)(50 106)(51 105)(52 104)(53 103)(54 102)(55 101)(56 100)(57 99)(58 98)(59 97)(60 96)(61 95)(62 94)(63 93)(64 92)(65 91)(66 90)(67 142)(68 141)(69 140)(70 139)(71 138)(72 137)(73 136)(74 135)(75 134)(76 133)(77 154)(78 153)(79 152)(80 151)(81 150)(82 149)(83 148)(84 147)(85 146)(86 145)(87 144)(88 143)
(1 37 174 123)(2 36 175 122)(3 35 176 121)(4 34 155 120)(5 33 156 119)(6 32 157 118)(7 31 158 117)(8 30 159 116)(9 29 160 115)(10 28 161 114)(11 27 162 113)(12 26 163 112)(13 25 164 111)(14 24 165 132)(15 23 166 131)(16 44 167 130)(17 43 168 129)(18 42 169 128)(19 41 170 127)(20 40 171 126)(21 39 172 125)(22 38 173 124)(45 84 97 152)(46 83 98 151)(47 82 99 150)(48 81 100 149)(49 80 101 148)(50 79 102 147)(51 78 103 146)(52 77 104 145)(53 76 105 144)(54 75 106 143)(55 74 107 142)(56 73 108 141)(57 72 109 140)(58 71 110 139)(59 70 89 138)(60 69 90 137)(61 68 91 136)(62 67 92 135)(63 88 93 134)(64 87 94 133)(65 86 95 154)(66 85 96 153)
(1 58 174 110)(2 57 175 109)(3 56 176 108)(4 55 155 107)(5 54 156 106)(6 53 157 105)(7 52 158 104)(8 51 159 103)(9 50 160 102)(10 49 161 101)(11 48 162 100)(12 47 163 99)(13 46 164 98)(14 45 165 97)(15 66 166 96)(16 65 167 95)(17 64 168 94)(18 63 169 93)(19 62 170 92)(20 61 171 91)(21 60 172 90)(22 59 173 89)(23 153 131 85)(24 152 132 84)(25 151 111 83)(26 150 112 82)(27 149 113 81)(28 148 114 80)(29 147 115 79)(30 146 116 78)(31 145 117 77)(32 144 118 76)(33 143 119 75)(34 142 120 74)(35 141 121 73)(36 140 122 72)(37 139 123 71)(38 138 124 70)(39 137 125 69)(40 136 126 68)(41 135 127 67)(42 134 128 88)(43 133 129 87)(44 154 130 86)

G:=sub<Sym(176)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66)(67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154)(155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176), (1,162)(2,161)(3,160)(4,159)(5,158)(6,157)(7,156)(8,155)(9,176)(10,175)(11,174)(12,173)(13,172)(14,171)(15,170)(16,169)(17,168)(18,167)(19,166)(20,165)(21,164)(22,163)(23,114)(24,113)(25,112)(26,111)(27,132)(28,131)(29,130)(30,129)(31,128)(32,127)(33,126)(34,125)(35,124)(36,123)(37,122)(38,121)(39,120)(40,119)(41,118)(42,117)(43,116)(44,115)(45,89)(46,110)(47,109)(48,108)(49,107)(50,106)(51,105)(52,104)(53,103)(54,102)(55,101)(56,100)(57,99)(58,98)(59,97)(60,96)(61,95)(62,94)(63,93)(64,92)(65,91)(66,90)(67,142)(68,141)(69,140)(70,139)(71,138)(72,137)(73,136)(74,135)(75,134)(76,133)(77,154)(78,153)(79,152)(80,151)(81,150)(82,149)(83,148)(84,147)(85,146)(86,145)(87,144)(88,143), (1,37,174,123)(2,36,175,122)(3,35,176,121)(4,34,155,120)(5,33,156,119)(6,32,157,118)(7,31,158,117)(8,30,159,116)(9,29,160,115)(10,28,161,114)(11,27,162,113)(12,26,163,112)(13,25,164,111)(14,24,165,132)(15,23,166,131)(16,44,167,130)(17,43,168,129)(18,42,169,128)(19,41,170,127)(20,40,171,126)(21,39,172,125)(22,38,173,124)(45,84,97,152)(46,83,98,151)(47,82,99,150)(48,81,100,149)(49,80,101,148)(50,79,102,147)(51,78,103,146)(52,77,104,145)(53,76,105,144)(54,75,106,143)(55,74,107,142)(56,73,108,141)(57,72,109,140)(58,71,110,139)(59,70,89,138)(60,69,90,137)(61,68,91,136)(62,67,92,135)(63,88,93,134)(64,87,94,133)(65,86,95,154)(66,85,96,153), (1,58,174,110)(2,57,175,109)(3,56,176,108)(4,55,155,107)(5,54,156,106)(6,53,157,105)(7,52,158,104)(8,51,159,103)(9,50,160,102)(10,49,161,101)(11,48,162,100)(12,47,163,99)(13,46,164,98)(14,45,165,97)(15,66,166,96)(16,65,167,95)(17,64,168,94)(18,63,169,93)(19,62,170,92)(20,61,171,91)(21,60,172,90)(22,59,173,89)(23,153,131,85)(24,152,132,84)(25,151,111,83)(26,150,112,82)(27,149,113,81)(28,148,114,80)(29,147,115,79)(30,146,116,78)(31,145,117,77)(32,144,118,76)(33,143,119,75)(34,142,120,74)(35,141,121,73)(36,140,122,72)(37,139,123,71)(38,138,124,70)(39,137,125,69)(40,136,126,68)(41,135,127,67)(42,134,128,88)(43,133,129,87)(44,154,130,86)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66)(67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154)(155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176), (1,162)(2,161)(3,160)(4,159)(5,158)(6,157)(7,156)(8,155)(9,176)(10,175)(11,174)(12,173)(13,172)(14,171)(15,170)(16,169)(17,168)(18,167)(19,166)(20,165)(21,164)(22,163)(23,114)(24,113)(25,112)(26,111)(27,132)(28,131)(29,130)(30,129)(31,128)(32,127)(33,126)(34,125)(35,124)(36,123)(37,122)(38,121)(39,120)(40,119)(41,118)(42,117)(43,116)(44,115)(45,89)(46,110)(47,109)(48,108)(49,107)(50,106)(51,105)(52,104)(53,103)(54,102)(55,101)(56,100)(57,99)(58,98)(59,97)(60,96)(61,95)(62,94)(63,93)(64,92)(65,91)(66,90)(67,142)(68,141)(69,140)(70,139)(71,138)(72,137)(73,136)(74,135)(75,134)(76,133)(77,154)(78,153)(79,152)(80,151)(81,150)(82,149)(83,148)(84,147)(85,146)(86,145)(87,144)(88,143), (1,37,174,123)(2,36,175,122)(3,35,176,121)(4,34,155,120)(5,33,156,119)(6,32,157,118)(7,31,158,117)(8,30,159,116)(9,29,160,115)(10,28,161,114)(11,27,162,113)(12,26,163,112)(13,25,164,111)(14,24,165,132)(15,23,166,131)(16,44,167,130)(17,43,168,129)(18,42,169,128)(19,41,170,127)(20,40,171,126)(21,39,172,125)(22,38,173,124)(45,84,97,152)(46,83,98,151)(47,82,99,150)(48,81,100,149)(49,80,101,148)(50,79,102,147)(51,78,103,146)(52,77,104,145)(53,76,105,144)(54,75,106,143)(55,74,107,142)(56,73,108,141)(57,72,109,140)(58,71,110,139)(59,70,89,138)(60,69,90,137)(61,68,91,136)(62,67,92,135)(63,88,93,134)(64,87,94,133)(65,86,95,154)(66,85,96,153), (1,58,174,110)(2,57,175,109)(3,56,176,108)(4,55,155,107)(5,54,156,106)(6,53,157,105)(7,52,158,104)(8,51,159,103)(9,50,160,102)(10,49,161,101)(11,48,162,100)(12,47,163,99)(13,46,164,98)(14,45,165,97)(15,66,166,96)(16,65,167,95)(17,64,168,94)(18,63,169,93)(19,62,170,92)(20,61,171,91)(21,60,172,90)(22,59,173,89)(23,153,131,85)(24,152,132,84)(25,151,111,83)(26,150,112,82)(27,149,113,81)(28,148,114,80)(29,147,115,79)(30,146,116,78)(31,145,117,77)(32,144,118,76)(33,143,119,75)(34,142,120,74)(35,141,121,73)(36,140,122,72)(37,139,123,71)(38,138,124,70)(39,137,125,69)(40,136,126,68)(41,135,127,67)(42,134,128,88)(43,133,129,87)(44,154,130,86) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22),(23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44),(45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66),(67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132),(133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154),(155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176)], [(1,162),(2,161),(3,160),(4,159),(5,158),(6,157),(7,156),(8,155),(9,176),(10,175),(11,174),(12,173),(13,172),(14,171),(15,170),(16,169),(17,168),(18,167),(19,166),(20,165),(21,164),(22,163),(23,114),(24,113),(25,112),(26,111),(27,132),(28,131),(29,130),(30,129),(31,128),(32,127),(33,126),(34,125),(35,124),(36,123),(37,122),(38,121),(39,120),(40,119),(41,118),(42,117),(43,116),(44,115),(45,89),(46,110),(47,109),(48,108),(49,107),(50,106),(51,105),(52,104),(53,103),(54,102),(55,101),(56,100),(57,99),(58,98),(59,97),(60,96),(61,95),(62,94),(63,93),(64,92),(65,91),(66,90),(67,142),(68,141),(69,140),(70,139),(71,138),(72,137),(73,136),(74,135),(75,134),(76,133),(77,154),(78,153),(79,152),(80,151),(81,150),(82,149),(83,148),(84,147),(85,146),(86,145),(87,144),(88,143)], [(1,37,174,123),(2,36,175,122),(3,35,176,121),(4,34,155,120),(5,33,156,119),(6,32,157,118),(7,31,158,117),(8,30,159,116),(9,29,160,115),(10,28,161,114),(11,27,162,113),(12,26,163,112),(13,25,164,111),(14,24,165,132),(15,23,166,131),(16,44,167,130),(17,43,168,129),(18,42,169,128),(19,41,170,127),(20,40,171,126),(21,39,172,125),(22,38,173,124),(45,84,97,152),(46,83,98,151),(47,82,99,150),(48,81,100,149),(49,80,101,148),(50,79,102,147),(51,78,103,146),(52,77,104,145),(53,76,105,144),(54,75,106,143),(55,74,107,142),(56,73,108,141),(57,72,109,140),(58,71,110,139),(59,70,89,138),(60,69,90,137),(61,68,91,136),(62,67,92,135),(63,88,93,134),(64,87,94,133),(65,86,95,154),(66,85,96,153)], [(1,58,174,110),(2,57,175,109),(3,56,176,108),(4,55,155,107),(5,54,156,106),(6,53,157,105),(7,52,158,104),(8,51,159,103),(9,50,160,102),(10,49,161,101),(11,48,162,100),(12,47,163,99),(13,46,164,98),(14,45,165,97),(15,66,166,96),(16,65,167,95),(17,64,168,94),(18,63,169,93),(19,62,170,92),(20,61,171,91),(21,60,172,90),(22,59,173,89),(23,153,131,85),(24,152,132,84),(25,151,111,83),(26,150,112,82),(27,149,113,81),(28,148,114,80),(29,147,115,79),(30,146,116,78),(31,145,117,77),(32,144,118,76),(33,143,119,75),(34,142,120,74),(35,141,121,73),(36,140,122,72),(37,139,123,71),(38,138,124,70),(39,137,125,69),(40,136,126,68),(41,135,127,67),(42,134,128,88),(43,133,129,87),(44,154,130,86)]])

64 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E4F4G4H11A···11E22A···22O44A···44AD
order1222224444444411···1122···2244···44
size111122222244222244442···22···24···4

64 irreducible representations

dim11111122222244
type+++++++-+++-
imageC1C2C2C2C2C2D4Q8C4○D4D11D22D445C2D4×D11Q8×D11
kernelD22⋊Q8Dic11⋊C4D22⋊C4C11×C4⋊C4C2×Dic22C2×C4×D11Dic11D22C22C4⋊C4C2×C4C2C2C2
# reps1221112225152055

Matrix representation of D22⋊Q8 in GL6(𝔽89)

8800000
0880000
00363600
00531100
000010
000001
,
8800000
7010000
00363600
00115300
0000880
0000088
,
15640000
66740000
001000
00718800
0000088
000010
,
3400000
23550000
0088000
0018100
00002020
00002069

G:=sub<GL(6,GF(89))| [88,0,0,0,0,0,0,88,0,0,0,0,0,0,36,53,0,0,0,0,36,11,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[88,70,0,0,0,0,0,1,0,0,0,0,0,0,36,11,0,0,0,0,36,53,0,0,0,0,0,0,88,0,0,0,0,0,0,88],[15,66,0,0,0,0,64,74,0,0,0,0,0,0,1,71,0,0,0,0,0,88,0,0,0,0,0,0,0,1,0,0,0,0,88,0],[34,23,0,0,0,0,0,55,0,0,0,0,0,0,88,18,0,0,0,0,0,1,0,0,0,0,0,0,20,20,0,0,0,0,20,69] >;

D22⋊Q8 in GAP, Magma, Sage, TeX

D_{22}\rtimes Q_8
% in TeX

G:=Group("D22:Q8");
// GroupNames label

G:=SmallGroup(352,91);
// by ID

G=gap.SmallGroup(352,91);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-11,55,506,188,86,11525]);
// Polycyclic

G:=Group<a,b,c,d|a^22=b^2=c^4=1,d^2=c^2,b*a*b=c*a*c^-1=d*a*d^-1=a^-1,c*b*c^-1=a^9*b,d*b*d^-1=a^20*b,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽