metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D22⋊1Q8, Dic11.7D4, C4⋊C4⋊4D11, C2.6(Q8×D11), D22⋊C4.2C2, C2.14(D4×D11), C22.26(C2×D4), (C2×C4).13D22, C11⋊2(C22⋊Q8), C22.13(C2×Q8), (C2×Dic22)⋊4C2, Dic11⋊C4⋊12C2, C22.13(C4○D4), (C2×C22).37C23, (C2×C44).58C22, C2.15(D44⋊5C2), C22.51(C22×D11), (C2×Dic11).12C22, (C22×D11).21C22, (C11×C4⋊C4)⋊7C2, (C2×C4×D11).9C2, SmallGroup(352,91)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D22⋊Q8
G = < a,b,c,d | a22=b2=c4=1, d2=c2, bab=cac-1=dad-1=a-1, cbc-1=a9b, dbd-1=a20b, dcd-1=c-1 >
Subgroups: 450 in 74 conjugacy classes, 33 normal (29 characteristic)
C1, C2, C2, C4, C22, C22, C2×C4, C2×C4, Q8, C23, C11, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C2×Q8, D11, C22, C22⋊Q8, Dic11, Dic11, C44, D22, D22, C2×C22, Dic22, C4×D11, C2×Dic11, C2×C44, C22×D11, Dic11⋊C4, D22⋊C4, C11×C4⋊C4, C2×Dic22, C2×C4×D11, D22⋊Q8
Quotients: C1, C2, C22, D4, Q8, C23, C2×D4, C2×Q8, C4○D4, D11, C22⋊Q8, D22, C22×D11, D44⋊5C2, D4×D11, Q8×D11, D22⋊Q8
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22)(23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44)(45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66)(67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132)(133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154)(155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176)
(1 162)(2 161)(3 160)(4 159)(5 158)(6 157)(7 156)(8 155)(9 176)(10 175)(11 174)(12 173)(13 172)(14 171)(15 170)(16 169)(17 168)(18 167)(19 166)(20 165)(21 164)(22 163)(23 114)(24 113)(25 112)(26 111)(27 132)(28 131)(29 130)(30 129)(31 128)(32 127)(33 126)(34 125)(35 124)(36 123)(37 122)(38 121)(39 120)(40 119)(41 118)(42 117)(43 116)(44 115)(45 89)(46 110)(47 109)(48 108)(49 107)(50 106)(51 105)(52 104)(53 103)(54 102)(55 101)(56 100)(57 99)(58 98)(59 97)(60 96)(61 95)(62 94)(63 93)(64 92)(65 91)(66 90)(67 142)(68 141)(69 140)(70 139)(71 138)(72 137)(73 136)(74 135)(75 134)(76 133)(77 154)(78 153)(79 152)(80 151)(81 150)(82 149)(83 148)(84 147)(85 146)(86 145)(87 144)(88 143)
(1 37 174 123)(2 36 175 122)(3 35 176 121)(4 34 155 120)(5 33 156 119)(6 32 157 118)(7 31 158 117)(8 30 159 116)(9 29 160 115)(10 28 161 114)(11 27 162 113)(12 26 163 112)(13 25 164 111)(14 24 165 132)(15 23 166 131)(16 44 167 130)(17 43 168 129)(18 42 169 128)(19 41 170 127)(20 40 171 126)(21 39 172 125)(22 38 173 124)(45 84 97 152)(46 83 98 151)(47 82 99 150)(48 81 100 149)(49 80 101 148)(50 79 102 147)(51 78 103 146)(52 77 104 145)(53 76 105 144)(54 75 106 143)(55 74 107 142)(56 73 108 141)(57 72 109 140)(58 71 110 139)(59 70 89 138)(60 69 90 137)(61 68 91 136)(62 67 92 135)(63 88 93 134)(64 87 94 133)(65 86 95 154)(66 85 96 153)
(1 58 174 110)(2 57 175 109)(3 56 176 108)(4 55 155 107)(5 54 156 106)(6 53 157 105)(7 52 158 104)(8 51 159 103)(9 50 160 102)(10 49 161 101)(11 48 162 100)(12 47 163 99)(13 46 164 98)(14 45 165 97)(15 66 166 96)(16 65 167 95)(17 64 168 94)(18 63 169 93)(19 62 170 92)(20 61 171 91)(21 60 172 90)(22 59 173 89)(23 153 131 85)(24 152 132 84)(25 151 111 83)(26 150 112 82)(27 149 113 81)(28 148 114 80)(29 147 115 79)(30 146 116 78)(31 145 117 77)(32 144 118 76)(33 143 119 75)(34 142 120 74)(35 141 121 73)(36 140 122 72)(37 139 123 71)(38 138 124 70)(39 137 125 69)(40 136 126 68)(41 135 127 67)(42 134 128 88)(43 133 129 87)(44 154 130 86)
G:=sub<Sym(176)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66)(67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154)(155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176), (1,162)(2,161)(3,160)(4,159)(5,158)(6,157)(7,156)(8,155)(9,176)(10,175)(11,174)(12,173)(13,172)(14,171)(15,170)(16,169)(17,168)(18,167)(19,166)(20,165)(21,164)(22,163)(23,114)(24,113)(25,112)(26,111)(27,132)(28,131)(29,130)(30,129)(31,128)(32,127)(33,126)(34,125)(35,124)(36,123)(37,122)(38,121)(39,120)(40,119)(41,118)(42,117)(43,116)(44,115)(45,89)(46,110)(47,109)(48,108)(49,107)(50,106)(51,105)(52,104)(53,103)(54,102)(55,101)(56,100)(57,99)(58,98)(59,97)(60,96)(61,95)(62,94)(63,93)(64,92)(65,91)(66,90)(67,142)(68,141)(69,140)(70,139)(71,138)(72,137)(73,136)(74,135)(75,134)(76,133)(77,154)(78,153)(79,152)(80,151)(81,150)(82,149)(83,148)(84,147)(85,146)(86,145)(87,144)(88,143), (1,37,174,123)(2,36,175,122)(3,35,176,121)(4,34,155,120)(5,33,156,119)(6,32,157,118)(7,31,158,117)(8,30,159,116)(9,29,160,115)(10,28,161,114)(11,27,162,113)(12,26,163,112)(13,25,164,111)(14,24,165,132)(15,23,166,131)(16,44,167,130)(17,43,168,129)(18,42,169,128)(19,41,170,127)(20,40,171,126)(21,39,172,125)(22,38,173,124)(45,84,97,152)(46,83,98,151)(47,82,99,150)(48,81,100,149)(49,80,101,148)(50,79,102,147)(51,78,103,146)(52,77,104,145)(53,76,105,144)(54,75,106,143)(55,74,107,142)(56,73,108,141)(57,72,109,140)(58,71,110,139)(59,70,89,138)(60,69,90,137)(61,68,91,136)(62,67,92,135)(63,88,93,134)(64,87,94,133)(65,86,95,154)(66,85,96,153), (1,58,174,110)(2,57,175,109)(3,56,176,108)(4,55,155,107)(5,54,156,106)(6,53,157,105)(7,52,158,104)(8,51,159,103)(9,50,160,102)(10,49,161,101)(11,48,162,100)(12,47,163,99)(13,46,164,98)(14,45,165,97)(15,66,166,96)(16,65,167,95)(17,64,168,94)(18,63,169,93)(19,62,170,92)(20,61,171,91)(21,60,172,90)(22,59,173,89)(23,153,131,85)(24,152,132,84)(25,151,111,83)(26,150,112,82)(27,149,113,81)(28,148,114,80)(29,147,115,79)(30,146,116,78)(31,145,117,77)(32,144,118,76)(33,143,119,75)(34,142,120,74)(35,141,121,73)(36,140,122,72)(37,139,123,71)(38,138,124,70)(39,137,125,69)(40,136,126,68)(41,135,127,67)(42,134,128,88)(43,133,129,87)(44,154,130,86)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66)(67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154)(155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176), (1,162)(2,161)(3,160)(4,159)(5,158)(6,157)(7,156)(8,155)(9,176)(10,175)(11,174)(12,173)(13,172)(14,171)(15,170)(16,169)(17,168)(18,167)(19,166)(20,165)(21,164)(22,163)(23,114)(24,113)(25,112)(26,111)(27,132)(28,131)(29,130)(30,129)(31,128)(32,127)(33,126)(34,125)(35,124)(36,123)(37,122)(38,121)(39,120)(40,119)(41,118)(42,117)(43,116)(44,115)(45,89)(46,110)(47,109)(48,108)(49,107)(50,106)(51,105)(52,104)(53,103)(54,102)(55,101)(56,100)(57,99)(58,98)(59,97)(60,96)(61,95)(62,94)(63,93)(64,92)(65,91)(66,90)(67,142)(68,141)(69,140)(70,139)(71,138)(72,137)(73,136)(74,135)(75,134)(76,133)(77,154)(78,153)(79,152)(80,151)(81,150)(82,149)(83,148)(84,147)(85,146)(86,145)(87,144)(88,143), (1,37,174,123)(2,36,175,122)(3,35,176,121)(4,34,155,120)(5,33,156,119)(6,32,157,118)(7,31,158,117)(8,30,159,116)(9,29,160,115)(10,28,161,114)(11,27,162,113)(12,26,163,112)(13,25,164,111)(14,24,165,132)(15,23,166,131)(16,44,167,130)(17,43,168,129)(18,42,169,128)(19,41,170,127)(20,40,171,126)(21,39,172,125)(22,38,173,124)(45,84,97,152)(46,83,98,151)(47,82,99,150)(48,81,100,149)(49,80,101,148)(50,79,102,147)(51,78,103,146)(52,77,104,145)(53,76,105,144)(54,75,106,143)(55,74,107,142)(56,73,108,141)(57,72,109,140)(58,71,110,139)(59,70,89,138)(60,69,90,137)(61,68,91,136)(62,67,92,135)(63,88,93,134)(64,87,94,133)(65,86,95,154)(66,85,96,153), (1,58,174,110)(2,57,175,109)(3,56,176,108)(4,55,155,107)(5,54,156,106)(6,53,157,105)(7,52,158,104)(8,51,159,103)(9,50,160,102)(10,49,161,101)(11,48,162,100)(12,47,163,99)(13,46,164,98)(14,45,165,97)(15,66,166,96)(16,65,167,95)(17,64,168,94)(18,63,169,93)(19,62,170,92)(20,61,171,91)(21,60,172,90)(22,59,173,89)(23,153,131,85)(24,152,132,84)(25,151,111,83)(26,150,112,82)(27,149,113,81)(28,148,114,80)(29,147,115,79)(30,146,116,78)(31,145,117,77)(32,144,118,76)(33,143,119,75)(34,142,120,74)(35,141,121,73)(36,140,122,72)(37,139,123,71)(38,138,124,70)(39,137,125,69)(40,136,126,68)(41,135,127,67)(42,134,128,88)(43,133,129,87)(44,154,130,86) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22),(23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44),(45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66),(67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132),(133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154),(155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176)], [(1,162),(2,161),(3,160),(4,159),(5,158),(6,157),(7,156),(8,155),(9,176),(10,175),(11,174),(12,173),(13,172),(14,171),(15,170),(16,169),(17,168),(18,167),(19,166),(20,165),(21,164),(22,163),(23,114),(24,113),(25,112),(26,111),(27,132),(28,131),(29,130),(30,129),(31,128),(32,127),(33,126),(34,125),(35,124),(36,123),(37,122),(38,121),(39,120),(40,119),(41,118),(42,117),(43,116),(44,115),(45,89),(46,110),(47,109),(48,108),(49,107),(50,106),(51,105),(52,104),(53,103),(54,102),(55,101),(56,100),(57,99),(58,98),(59,97),(60,96),(61,95),(62,94),(63,93),(64,92),(65,91),(66,90),(67,142),(68,141),(69,140),(70,139),(71,138),(72,137),(73,136),(74,135),(75,134),(76,133),(77,154),(78,153),(79,152),(80,151),(81,150),(82,149),(83,148),(84,147),(85,146),(86,145),(87,144),(88,143)], [(1,37,174,123),(2,36,175,122),(3,35,176,121),(4,34,155,120),(5,33,156,119),(6,32,157,118),(7,31,158,117),(8,30,159,116),(9,29,160,115),(10,28,161,114),(11,27,162,113),(12,26,163,112),(13,25,164,111),(14,24,165,132),(15,23,166,131),(16,44,167,130),(17,43,168,129),(18,42,169,128),(19,41,170,127),(20,40,171,126),(21,39,172,125),(22,38,173,124),(45,84,97,152),(46,83,98,151),(47,82,99,150),(48,81,100,149),(49,80,101,148),(50,79,102,147),(51,78,103,146),(52,77,104,145),(53,76,105,144),(54,75,106,143),(55,74,107,142),(56,73,108,141),(57,72,109,140),(58,71,110,139),(59,70,89,138),(60,69,90,137),(61,68,91,136),(62,67,92,135),(63,88,93,134),(64,87,94,133),(65,86,95,154),(66,85,96,153)], [(1,58,174,110),(2,57,175,109),(3,56,176,108),(4,55,155,107),(5,54,156,106),(6,53,157,105),(7,52,158,104),(8,51,159,103),(9,50,160,102),(10,49,161,101),(11,48,162,100),(12,47,163,99),(13,46,164,98),(14,45,165,97),(15,66,166,96),(16,65,167,95),(17,64,168,94),(18,63,169,93),(19,62,170,92),(20,61,171,91),(21,60,172,90),(22,59,173,89),(23,153,131,85),(24,152,132,84),(25,151,111,83),(26,150,112,82),(27,149,113,81),(28,148,114,80),(29,147,115,79),(30,146,116,78),(31,145,117,77),(32,144,118,76),(33,143,119,75),(34,142,120,74),(35,141,121,73),(36,140,122,72),(37,139,123,71),(38,138,124,70),(39,137,125,69),(40,136,126,68),(41,135,127,67),(42,134,128,88),(43,133,129,87),(44,154,130,86)]])
64 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 11A | ··· | 11E | 22A | ··· | 22O | 44A | ··· | 44AD |
order | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 11 | ··· | 11 | 22 | ··· | 22 | 44 | ··· | 44 |
size | 1 | 1 | 1 | 1 | 22 | 22 | 2 | 2 | 4 | 4 | 22 | 22 | 44 | 44 | 2 | ··· | 2 | 2 | ··· | 2 | 4 | ··· | 4 |
64 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | - | + | + | + | - | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | D4 | Q8 | C4○D4 | D11 | D22 | D44⋊5C2 | D4×D11 | Q8×D11 |
kernel | D22⋊Q8 | Dic11⋊C4 | D22⋊C4 | C11×C4⋊C4 | C2×Dic22 | C2×C4×D11 | Dic11 | D22 | C22 | C4⋊C4 | C2×C4 | C2 | C2 | C2 |
# reps | 1 | 2 | 2 | 1 | 1 | 1 | 2 | 2 | 2 | 5 | 15 | 20 | 5 | 5 |
Matrix representation of D22⋊Q8 ►in GL6(𝔽89)
88 | 0 | 0 | 0 | 0 | 0 |
0 | 88 | 0 | 0 | 0 | 0 |
0 | 0 | 36 | 36 | 0 | 0 |
0 | 0 | 53 | 11 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
88 | 0 | 0 | 0 | 0 | 0 |
70 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 36 | 36 | 0 | 0 |
0 | 0 | 11 | 53 | 0 | 0 |
0 | 0 | 0 | 0 | 88 | 0 |
0 | 0 | 0 | 0 | 0 | 88 |
15 | 64 | 0 | 0 | 0 | 0 |
66 | 74 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 71 | 88 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 88 |
0 | 0 | 0 | 0 | 1 | 0 |
34 | 0 | 0 | 0 | 0 | 0 |
23 | 55 | 0 | 0 | 0 | 0 |
0 | 0 | 88 | 0 | 0 | 0 |
0 | 0 | 18 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 20 | 20 |
0 | 0 | 0 | 0 | 20 | 69 |
G:=sub<GL(6,GF(89))| [88,0,0,0,0,0,0,88,0,0,0,0,0,0,36,53,0,0,0,0,36,11,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[88,70,0,0,0,0,0,1,0,0,0,0,0,0,36,11,0,0,0,0,36,53,0,0,0,0,0,0,88,0,0,0,0,0,0,88],[15,66,0,0,0,0,64,74,0,0,0,0,0,0,1,71,0,0,0,0,0,88,0,0,0,0,0,0,0,1,0,0,0,0,88,0],[34,23,0,0,0,0,0,55,0,0,0,0,0,0,88,18,0,0,0,0,0,1,0,0,0,0,0,0,20,20,0,0,0,0,20,69] >;
D22⋊Q8 in GAP, Magma, Sage, TeX
D_{22}\rtimes Q_8
% in TeX
G:=Group("D22:Q8");
// GroupNames label
G:=SmallGroup(352,91);
// by ID
G=gap.SmallGroup(352,91);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-11,55,506,188,86,11525]);
// Polycyclic
G:=Group<a,b,c,d|a^22=b^2=c^4=1,d^2=c^2,b*a*b=c*a*c^-1=d*a*d^-1=a^-1,c*b*c^-1=a^9*b,d*b*d^-1=a^20*b,d*c*d^-1=c^-1>;
// generators/relations