Extensions 1→N→G→Q→1 with N=C2 and Q=D42D11

Direct product G=N×Q with N=C2 and Q=D42D11
dρLabelID
C2×D42D11176C2xD4:2D11352,178


Non-split extensions G=N.Q with N=C2 and Q=D42D11
extensionφ:Q→Aut NdρLabelID
C2.1(D42D11) = C23.11D22central extension (φ=1)176C2.1(D4:2D11)352,72
C2.2(D42D11) = Dic114D4central extension (φ=1)176C2.2(D4:2D11)352,76
C2.3(D42D11) = Dic22⋊C4central extension (φ=1)352C2.3(D4:2D11)352,82
C2.4(D42D11) = C4⋊C47D11central extension (φ=1)176C2.4(D4:2D11)352,87
C2.5(D42D11) = D4×Dic11central extension (φ=1)176C2.5(D4:2D11)352,129
C2.6(D42D11) = C22⋊Dic22central stem extension (φ=1)176C2.6(D4:2D11)352,73
C2.7(D42D11) = C23.D22central stem extension (φ=1)176C2.7(D4:2D11)352,74
C2.8(D42D11) = D22.D4central stem extension (φ=1)176C2.8(D4:2D11)352,78
C2.9(D42D11) = Dic11.D4central stem extension (φ=1)176C2.9(D4:2D11)352,80
C2.10(D42D11) = C22.D44central stem extension (φ=1)176C2.10(D4:2D11)352,81
C2.11(D42D11) = Dic11.Q8central stem extension (φ=1)352C2.11(D4:2D11)352,84
C2.12(D42D11) = C44.3Q8central stem extension (φ=1)352C2.12(D4:2D11)352,85
C2.13(D42D11) = D222Q8central stem extension (φ=1)176C2.13(D4:2D11)352,92
C2.14(D42D11) = C4⋊C4⋊D11central stem extension (φ=1)176C2.14(D4:2D11)352,93
C2.15(D42D11) = C23.18D22central stem extension (φ=1)176C2.15(D4:2D11)352,130
C2.16(D42D11) = C44.17D4central stem extension (φ=1)176C2.16(D4:2D11)352,131
C2.17(D42D11) = C442D4central stem extension (φ=1)176C2.17(D4:2D11)352,133
C2.18(D42D11) = Dic11⋊D4central stem extension (φ=1)176C2.18(D4:2D11)352,134

׿
×
𝔽