Copied to
clipboard

G = C4⋊C47D11order 352 = 25·11

1st semidirect product of C4⋊C4 and D11 acting through Inn(C4⋊C4)

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C4⋊C47D11, (C4×D11)⋊2C4, C44.11(C2×C4), D22⋊C4.4C2, C44⋊C412C2, D22.4(C2×C4), C4.14(C4×D11), (C2×C4).44D22, C113(C42⋊C2), (C4×Dic11)⋊13C2, C22.26(C4○D4), (C2×C22).33C23, (C2×C44).56C22, C22.10(C22×C4), Dic11.9(C2×C4), C2.1(D44⋊C2), C2.4(D42D11), C22.17(C22×D11), (C2×Dic11).30C22, (C22×D11).19C22, (C11×C4⋊C4)⋊3C2, (C2×C4×D11).2C2, C2.12(C2×C4×D11), SmallGroup(352,87)

Series: Derived Chief Lower central Upper central

C1C22 — C4⋊C47D11
C1C11C22C2×C22C22×D11C2×C4×D11 — C4⋊C47D11
C11C22 — C4⋊C47D11
C1C22C4⋊C4

Generators and relations for C4⋊C47D11
 G = < a,b,c,d | a4=b4=c11=d2=1, bab-1=a-1, ac=ca, ad=da, bc=cb, dbd=a2b, dcd=c-1 >

Subgroups: 402 in 76 conjugacy classes, 41 normal (19 characteristic)
C1, C2, C2, C4, C4, C22, C22, C2×C4, C2×C4, C2×C4, C23, C11, C42, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, D11, C22, C42⋊C2, Dic11, Dic11, C44, C44, D22, D22, C2×C22, C4×D11, C2×Dic11, C2×Dic11, C2×C44, C2×C44, C22×D11, C4×Dic11, C44⋊C4, D22⋊C4, C11×C4⋊C4, C2×C4×D11, C4⋊C47D11
Quotients: C1, C2, C4, C22, C2×C4, C23, C22×C4, C4○D4, D11, C42⋊C2, D22, C4×D11, C22×D11, C2×C4×D11, D42D11, D44⋊C2, C4⋊C47D11

Smallest permutation representation of C4⋊C47D11
On 176 points
Generators in S176
(1 131 21 120)(2 132 22 121)(3 122 12 111)(4 123 13 112)(5 124 14 113)(6 125 15 114)(7 126 16 115)(8 127 17 116)(9 128 18 117)(10 129 19 118)(11 130 20 119)(23 100 34 89)(24 101 35 90)(25 102 36 91)(26 103 37 92)(27 104 38 93)(28 105 39 94)(29 106 40 95)(30 107 41 96)(31 108 42 97)(32 109 43 98)(33 110 44 99)(45 166 56 155)(46 167 57 156)(47 168 58 157)(48 169 59 158)(49 170 60 159)(50 171 61 160)(51 172 62 161)(52 173 63 162)(53 174 64 163)(54 175 65 164)(55 176 66 165)(67 144 78 133)(68 145 79 134)(69 146 80 135)(70 147 81 136)(71 148 82 137)(72 149 83 138)(73 150 84 139)(74 151 85 140)(75 152 86 141)(76 153 87 142)(77 154 88 143)
(1 76 32 54)(2 77 33 55)(3 67 23 45)(4 68 24 46)(5 69 25 47)(6 70 26 48)(7 71 27 49)(8 72 28 50)(9 73 29 51)(10 74 30 52)(11 75 31 53)(12 78 34 56)(13 79 35 57)(14 80 36 58)(15 81 37 59)(16 82 38 60)(17 83 39 61)(18 84 40 62)(19 85 41 63)(20 86 42 64)(21 87 43 65)(22 88 44 66)(89 166 111 144)(90 167 112 145)(91 168 113 146)(92 169 114 147)(93 170 115 148)(94 171 116 149)(95 172 117 150)(96 173 118 151)(97 174 119 152)(98 175 120 153)(99 176 121 154)(100 155 122 133)(101 156 123 134)(102 157 124 135)(103 158 125 136)(104 159 126 137)(105 160 127 138)(106 161 128 139)(107 162 129 140)(108 163 130 141)(109 164 131 142)(110 165 132 143)
(1 2 3 4 5 6 7 8 9 10 11)(12 13 14 15 16 17 18 19 20 21 22)(23 24 25 26 27 28 29 30 31 32 33)(34 35 36 37 38 39 40 41 42 43 44)(45 46 47 48 49 50 51 52 53 54 55)(56 57 58 59 60 61 62 63 64 65 66)(67 68 69 70 71 72 73 74 75 76 77)(78 79 80 81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96 97 98 99)(100 101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120 121)(122 123 124 125 126 127 128 129 130 131 132)(133 134 135 136 137 138 139 140 141 142 143)(144 145 146 147 148 149 150 151 152 153 154)(155 156 157 158 159 160 161 162 163 164 165)(166 167 168 169 170 171 172 173 174 175 176)
(1 11)(2 10)(3 9)(4 8)(5 7)(12 18)(13 17)(14 16)(19 22)(20 21)(23 29)(24 28)(25 27)(30 33)(31 32)(34 40)(35 39)(36 38)(41 44)(42 43)(45 62)(46 61)(47 60)(48 59)(49 58)(50 57)(51 56)(52 66)(53 65)(54 64)(55 63)(67 84)(68 83)(69 82)(70 81)(71 80)(72 79)(73 78)(74 88)(75 87)(76 86)(77 85)(89 95)(90 94)(91 93)(96 99)(97 98)(100 106)(101 105)(102 104)(107 110)(108 109)(111 117)(112 116)(113 115)(118 121)(119 120)(122 128)(123 127)(124 126)(129 132)(130 131)(133 150)(134 149)(135 148)(136 147)(137 146)(138 145)(139 144)(140 154)(141 153)(142 152)(143 151)(155 172)(156 171)(157 170)(158 169)(159 168)(160 167)(161 166)(162 176)(163 175)(164 174)(165 173)

G:=sub<Sym(176)| (1,131,21,120)(2,132,22,121)(3,122,12,111)(4,123,13,112)(5,124,14,113)(6,125,15,114)(7,126,16,115)(8,127,17,116)(9,128,18,117)(10,129,19,118)(11,130,20,119)(23,100,34,89)(24,101,35,90)(25,102,36,91)(26,103,37,92)(27,104,38,93)(28,105,39,94)(29,106,40,95)(30,107,41,96)(31,108,42,97)(32,109,43,98)(33,110,44,99)(45,166,56,155)(46,167,57,156)(47,168,58,157)(48,169,59,158)(49,170,60,159)(50,171,61,160)(51,172,62,161)(52,173,63,162)(53,174,64,163)(54,175,65,164)(55,176,66,165)(67,144,78,133)(68,145,79,134)(69,146,80,135)(70,147,81,136)(71,148,82,137)(72,149,83,138)(73,150,84,139)(74,151,85,140)(75,152,86,141)(76,153,87,142)(77,154,88,143), (1,76,32,54)(2,77,33,55)(3,67,23,45)(4,68,24,46)(5,69,25,47)(6,70,26,48)(7,71,27,49)(8,72,28,50)(9,73,29,51)(10,74,30,52)(11,75,31,53)(12,78,34,56)(13,79,35,57)(14,80,36,58)(15,81,37,59)(16,82,38,60)(17,83,39,61)(18,84,40,62)(19,85,41,63)(20,86,42,64)(21,87,43,65)(22,88,44,66)(89,166,111,144)(90,167,112,145)(91,168,113,146)(92,169,114,147)(93,170,115,148)(94,171,116,149)(95,172,117,150)(96,173,118,151)(97,174,119,152)(98,175,120,153)(99,176,121,154)(100,155,122,133)(101,156,123,134)(102,157,124,135)(103,158,125,136)(104,159,126,137)(105,160,127,138)(106,161,128,139)(107,162,129,140)(108,163,130,141)(109,164,131,142)(110,165,132,143), (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55)(56,57,58,59,60,61,62,63,64,65,66)(67,68,69,70,71,72,73,74,75,76,77)(78,79,80,81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120,121)(122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143)(144,145,146,147,148,149,150,151,152,153,154)(155,156,157,158,159,160,161,162,163,164,165)(166,167,168,169,170,171,172,173,174,175,176), (1,11)(2,10)(3,9)(4,8)(5,7)(12,18)(13,17)(14,16)(19,22)(20,21)(23,29)(24,28)(25,27)(30,33)(31,32)(34,40)(35,39)(36,38)(41,44)(42,43)(45,62)(46,61)(47,60)(48,59)(49,58)(50,57)(51,56)(52,66)(53,65)(54,64)(55,63)(67,84)(68,83)(69,82)(70,81)(71,80)(72,79)(73,78)(74,88)(75,87)(76,86)(77,85)(89,95)(90,94)(91,93)(96,99)(97,98)(100,106)(101,105)(102,104)(107,110)(108,109)(111,117)(112,116)(113,115)(118,121)(119,120)(122,128)(123,127)(124,126)(129,132)(130,131)(133,150)(134,149)(135,148)(136,147)(137,146)(138,145)(139,144)(140,154)(141,153)(142,152)(143,151)(155,172)(156,171)(157,170)(158,169)(159,168)(160,167)(161,166)(162,176)(163,175)(164,174)(165,173)>;

G:=Group( (1,131,21,120)(2,132,22,121)(3,122,12,111)(4,123,13,112)(5,124,14,113)(6,125,15,114)(7,126,16,115)(8,127,17,116)(9,128,18,117)(10,129,19,118)(11,130,20,119)(23,100,34,89)(24,101,35,90)(25,102,36,91)(26,103,37,92)(27,104,38,93)(28,105,39,94)(29,106,40,95)(30,107,41,96)(31,108,42,97)(32,109,43,98)(33,110,44,99)(45,166,56,155)(46,167,57,156)(47,168,58,157)(48,169,59,158)(49,170,60,159)(50,171,61,160)(51,172,62,161)(52,173,63,162)(53,174,64,163)(54,175,65,164)(55,176,66,165)(67,144,78,133)(68,145,79,134)(69,146,80,135)(70,147,81,136)(71,148,82,137)(72,149,83,138)(73,150,84,139)(74,151,85,140)(75,152,86,141)(76,153,87,142)(77,154,88,143), (1,76,32,54)(2,77,33,55)(3,67,23,45)(4,68,24,46)(5,69,25,47)(6,70,26,48)(7,71,27,49)(8,72,28,50)(9,73,29,51)(10,74,30,52)(11,75,31,53)(12,78,34,56)(13,79,35,57)(14,80,36,58)(15,81,37,59)(16,82,38,60)(17,83,39,61)(18,84,40,62)(19,85,41,63)(20,86,42,64)(21,87,43,65)(22,88,44,66)(89,166,111,144)(90,167,112,145)(91,168,113,146)(92,169,114,147)(93,170,115,148)(94,171,116,149)(95,172,117,150)(96,173,118,151)(97,174,119,152)(98,175,120,153)(99,176,121,154)(100,155,122,133)(101,156,123,134)(102,157,124,135)(103,158,125,136)(104,159,126,137)(105,160,127,138)(106,161,128,139)(107,162,129,140)(108,163,130,141)(109,164,131,142)(110,165,132,143), (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55)(56,57,58,59,60,61,62,63,64,65,66)(67,68,69,70,71,72,73,74,75,76,77)(78,79,80,81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120,121)(122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143)(144,145,146,147,148,149,150,151,152,153,154)(155,156,157,158,159,160,161,162,163,164,165)(166,167,168,169,170,171,172,173,174,175,176), (1,11)(2,10)(3,9)(4,8)(5,7)(12,18)(13,17)(14,16)(19,22)(20,21)(23,29)(24,28)(25,27)(30,33)(31,32)(34,40)(35,39)(36,38)(41,44)(42,43)(45,62)(46,61)(47,60)(48,59)(49,58)(50,57)(51,56)(52,66)(53,65)(54,64)(55,63)(67,84)(68,83)(69,82)(70,81)(71,80)(72,79)(73,78)(74,88)(75,87)(76,86)(77,85)(89,95)(90,94)(91,93)(96,99)(97,98)(100,106)(101,105)(102,104)(107,110)(108,109)(111,117)(112,116)(113,115)(118,121)(119,120)(122,128)(123,127)(124,126)(129,132)(130,131)(133,150)(134,149)(135,148)(136,147)(137,146)(138,145)(139,144)(140,154)(141,153)(142,152)(143,151)(155,172)(156,171)(157,170)(158,169)(159,168)(160,167)(161,166)(162,176)(163,175)(164,174)(165,173) );

G=PermutationGroup([[(1,131,21,120),(2,132,22,121),(3,122,12,111),(4,123,13,112),(5,124,14,113),(6,125,15,114),(7,126,16,115),(8,127,17,116),(9,128,18,117),(10,129,19,118),(11,130,20,119),(23,100,34,89),(24,101,35,90),(25,102,36,91),(26,103,37,92),(27,104,38,93),(28,105,39,94),(29,106,40,95),(30,107,41,96),(31,108,42,97),(32,109,43,98),(33,110,44,99),(45,166,56,155),(46,167,57,156),(47,168,58,157),(48,169,59,158),(49,170,60,159),(50,171,61,160),(51,172,62,161),(52,173,63,162),(53,174,64,163),(54,175,65,164),(55,176,66,165),(67,144,78,133),(68,145,79,134),(69,146,80,135),(70,147,81,136),(71,148,82,137),(72,149,83,138),(73,150,84,139),(74,151,85,140),(75,152,86,141),(76,153,87,142),(77,154,88,143)], [(1,76,32,54),(2,77,33,55),(3,67,23,45),(4,68,24,46),(5,69,25,47),(6,70,26,48),(7,71,27,49),(8,72,28,50),(9,73,29,51),(10,74,30,52),(11,75,31,53),(12,78,34,56),(13,79,35,57),(14,80,36,58),(15,81,37,59),(16,82,38,60),(17,83,39,61),(18,84,40,62),(19,85,41,63),(20,86,42,64),(21,87,43,65),(22,88,44,66),(89,166,111,144),(90,167,112,145),(91,168,113,146),(92,169,114,147),(93,170,115,148),(94,171,116,149),(95,172,117,150),(96,173,118,151),(97,174,119,152),(98,175,120,153),(99,176,121,154),(100,155,122,133),(101,156,123,134),(102,157,124,135),(103,158,125,136),(104,159,126,137),(105,160,127,138),(106,161,128,139),(107,162,129,140),(108,163,130,141),(109,164,131,142),(110,165,132,143)], [(1,2,3,4,5,6,7,8,9,10,11),(12,13,14,15,16,17,18,19,20,21,22),(23,24,25,26,27,28,29,30,31,32,33),(34,35,36,37,38,39,40,41,42,43,44),(45,46,47,48,49,50,51,52,53,54,55),(56,57,58,59,60,61,62,63,64,65,66),(67,68,69,70,71,72,73,74,75,76,77),(78,79,80,81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96,97,98,99),(100,101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120,121),(122,123,124,125,126,127,128,129,130,131,132),(133,134,135,136,137,138,139,140,141,142,143),(144,145,146,147,148,149,150,151,152,153,154),(155,156,157,158,159,160,161,162,163,164,165),(166,167,168,169,170,171,172,173,174,175,176)], [(1,11),(2,10),(3,9),(4,8),(5,7),(12,18),(13,17),(14,16),(19,22),(20,21),(23,29),(24,28),(25,27),(30,33),(31,32),(34,40),(35,39),(36,38),(41,44),(42,43),(45,62),(46,61),(47,60),(48,59),(49,58),(50,57),(51,56),(52,66),(53,65),(54,64),(55,63),(67,84),(68,83),(69,82),(70,81),(71,80),(72,79),(73,78),(74,88),(75,87),(76,86),(77,85),(89,95),(90,94),(91,93),(96,99),(97,98),(100,106),(101,105),(102,104),(107,110),(108,109),(111,117),(112,116),(113,115),(118,121),(119,120),(122,128),(123,127),(124,126),(129,132),(130,131),(133,150),(134,149),(135,148),(136,147),(137,146),(138,145),(139,144),(140,154),(141,153),(142,152),(143,151),(155,172),(156,171),(157,170),(158,169),(159,168),(160,167),(161,166),(162,176),(163,175),(164,174),(165,173)]])

70 conjugacy classes

class 1 2A2B2C2D2E4A···4F4G4H4I4J4K4L4M4N11A···11E22A···22O44A···44AD
order1222224···44444444411···1122···2244···44
size111122222···211111111222222222···22···24···4

70 irreducible representations

dim1111111222244
type++++++++-+
imageC1C2C2C2C2C2C4C4○D4D11D22C4×D11D42D11D44⋊C2
kernelC4⋊C47D11C4×Dic11C44⋊C4D22⋊C4C11×C4⋊C4C2×C4×D11C4×D11C22C4⋊C4C2×C4C4C2C2
# reps121211845152055

Matrix representation of C4⋊C47D11 in GL4(𝔽89) generated by

88000
08800
00340
00555
,
55000
05500
006750
001722
,
88100
325600
0010
0001
,
88000
32100
0010
00888
G:=sub<GL(4,GF(89))| [88,0,0,0,0,88,0,0,0,0,34,5,0,0,0,55],[55,0,0,0,0,55,0,0,0,0,67,17,0,0,50,22],[88,32,0,0,1,56,0,0,0,0,1,0,0,0,0,1],[88,32,0,0,0,1,0,0,0,0,1,8,0,0,0,88] >;

C4⋊C47D11 in GAP, Magma, Sage, TeX

C_4\rtimes C_4\rtimes_7D_{11}
% in TeX

G:=Group("C4:C4:7D11");
// GroupNames label

G:=SmallGroup(352,87);
// by ID

G=gap.SmallGroup(352,87);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-11,103,362,188,50,11525]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^11=d^2=1,b*a*b^-1=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d=a^2*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽