Extensions 1→N→G→Q→1 with N=C39 and Q=C32

Direct product G=N×Q with N=C39 and Q=C32

Semidirect products G=N:Q with N=C39 and Q=C32
extensionφ:Q→Aut NdρLabelID
C39⋊C32 = C32×C13⋊C3φ: C32/C3C3 ⊆ Aut C39117C39:C3^2351,13

Non-split extensions G=N.Q with N=C39 and Q=C32
extensionφ:Q→Aut NdρLabelID
C39.1C32 = C9×C13⋊C3φ: C32/C3C3 ⊆ Aut C391173C39.1C3^2351,3
C39.2C32 = C117⋊C3φ: C32/C3C3 ⊆ Aut C391173C39.2C3^2351,4
C39.3C32 = C1173C3φ: C32/C3C3 ⊆ Aut C391173C39.3C3^2351,5
C39.4C32 = C3×C13⋊C9φ: C32/C3C3 ⊆ Aut C39351C39.4C3^2351,6
C39.5C32 = C39.C32φ: C32/C3C3 ⊆ Aut C391173C39.5C3^2351,7
C39.6C32 = C13⋊He3φ: C32/C3C3 ⊆ Aut C391173C39.6C3^2351,8
C39.7C32 = C13×He3central extension (φ=1)1173C39.7C3^2351,10
C39.8C32 = C13×3- 1+2central extension (φ=1)1173C39.8C3^2351,11