Extensions 1→N→G→Q→1 with N=C22 and Q=M4(2)

Direct product G=N×Q with N=C22 and Q=M4(2)

Semidirect products G=N:Q with N=C22 and Q=M4(2)
extensionφ:Q→Aut NdρLabelID
C221M4(2) = C2×C88⋊C2φ: M4(2)/C8C2 ⊆ Aut C22176C22:1M4(2)352,95
C222M4(2) = C2×C44.C4φ: M4(2)/C2×C4C2 ⊆ Aut C22176C22:2M4(2)352,116

Non-split extensions G=N.Q with N=C22 and Q=M4(2)
extensionφ:Q→Aut NdρLabelID
C22.1M4(2) = Dic11⋊C8φ: M4(2)/C8C2 ⊆ Aut C22352C22.1M4(2)352,20
C22.2M4(2) = C88⋊C4φ: M4(2)/C8C2 ⊆ Aut C22352C22.2M4(2)352,21
C22.3M4(2) = D22⋊C8φ: M4(2)/C8C2 ⊆ Aut C22176C22.3M4(2)352,26
C22.4M4(2) = C42.D11φ: M4(2)/C2×C4C2 ⊆ Aut C22352C22.4M4(2)352,9
C22.5M4(2) = C44⋊C8φ: M4(2)/C2×C4C2 ⊆ Aut C22352C22.5M4(2)352,10
C22.6M4(2) = C44.55D4φ: M4(2)/C2×C4C2 ⊆ Aut C22176C22.6M4(2)352,36
C22.7M4(2) = C11×C8⋊C4central extension (φ=1)352C22.7M4(2)352,46
C22.8M4(2) = C11×C22⋊C8central extension (φ=1)176C22.8M4(2)352,47
C22.9M4(2) = C11×C4⋊C8central extension (φ=1)352C22.9M4(2)352,54